For all \( (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b \), we notice:
\( \delta = a \wedge b = GCD(a, b) \);
\( GCD(a, b) \) is the greatest common divisor of \( a \) and \( b \).
It is the last non-zero remainder \( R_n \) of the Euclidian division of \( a \) by \( b \) in the Euclid's algorithm.
\( \mathcal{D}(a, b)\) the set of common divisors of \( a \) and \( b \);
\( \mathcal{D}(\delta)\) the set of all divisors of \( GCD(a, b) \).
Equality between the divisors of a and b and the divisors of thier GCD
$$ \mathcal{D}(a, b) = \mathcal{D}( GCD(a, b) ) $$
The set of common divisors of \( a \) and \( b \) is the set of divisors of \( GCD(a, b) \).
Equality between the successives GCD of the Euclid's algorithm
$$ a = bq + R \Longrightarrow GCD(a, b) = GCD(b, R) $$
Let be the breakdown of \(a \) and \(b \) in prime factors:
$$ \forall n \in \mathbb{N}, \enspace \forall p_n \in \mathbb{P}, \enspace \exists (\alpha_n, \beta_n) \in \hspace{0.05em}\mathbb{N}^2, \enspace \Biggl \{ \begin{gather*} a = p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n} \\ b = p_1^{\beta_1}p_2^{\beta_2}...p_n^{\beta_n} \end{gather*} $$
So,
$$ GCD(a, b) = p_1^{min \{ \alpha_1, \beta_1\}} \times p_2^{min\{\alpha_2, \beta_2\}} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{min \{ \alpha_n, \beta_n\}} $$
$$ \delta = a \wedge b \hspace{0.2em} \Longrightarrow \hspace{0.2em} \exists (u, v) \in \hspace{0.05em}\mathbb{Z}^2, \enspace au + bv = \delta \qquad (Bézout's \ identity)$$
Breakdown of two numbers in relation to their GCD
$$ \delta = a \wedge b \hspace{0.2em} \Longrightarrow \hspace{0.2em} \exists (a', b') \in \mathbb{N}, \enspace \Biggl \{ \begin{gather*} a = \delta a' \\ b = \delta b'\end{gather*} \enspace \enspace (with \enspace a' \wedge b' = 1)$$
$$ GCD(ka, kb) = k.GCD(a, b) $$
$$ GCD(a, b) \times LCM(a, b) = ab $$
Recap table of the \(GCD(A,B)\)
Let be \((a, b) \in \hspace{0.05em}\mathbb{N}^2\) and \( \delta = GCD(a, b) \).
As \( \delta \) is the greatest common divisor of \( a \) and \( b \), so:
$$ \Biggl \{ \begin{gather*} \delta / a \Longrightarrow a = k\delta \\ \delta / b \Longrightarrow b = k'\delta \end {gather*} \qquad (1) $$
Let suppose it exists \( d \ ( d \in \mathbb{N}) \), a commun divisor of \( a \) and \( b \), such as \( d < \delta \), and which does not divide \( \delta \).
So, we would have:
$$ \Biggl \{ \begin{gather*} d / a \Longrightarrow a = qd \\ d / b \Longrightarrow b = q'd \\ d \nmid \delta \Longrightarrow \delta = Qd + R \end {gather*} \qquad (2) $$
As a result, both expressions \( (1) \) et \( (2) \) combined give:
$$ \Biggl \{ \begin{gather*} a = k\delta = qd \Longrightarrow k ( Qd + R ) = qd \\ b = k'\delta = q'd \Longrightarrow k' ( Qd + R ) = q'd \end {gather*} $$
$$ \Biggl \{ \begin{gather*} a = kQd + k R = qd \\ b = k'Qd + k' R = q'd \end {gather*} \qquad (3) $$
The only way for \( (3) \) to make sense would be that:
$$ \Biggl \{ \begin{gather*} k = d \\ k' = d \end {gather*} \enspace \Longrightarrow \enspace k = k' = d $$
But, \( k \neq k' \) since \( a \neq b \) and \( \delta \) is unique, that does not make sense.
We then clearly see that any number \( d \), common divisor of \( a \) and \( b \) also divides their \(GCD\).
So that the set all of common divisors of \( a \) and \( b \) is also the set of the divisors of \( GCD(a, b) \).
$$ \mathcal{D}(a, b) = \mathcal{D}( GCD(a, b) ) $$
We can find all this divisors by the breakdown in prime factors of \( GCD(a, b) \).
Let \((a, b) \in \hspace{0.05em}\mathbb{N}^2\) two natural numbers.
If \(b\) does not divide \(a\), we know that:
Likewise, if \(R_0\) does not divide \(b\):
And so on...
However, we know from the Euclid's algorithm that:
\( \forall (k,n) \in \hspace{0.05em}\mathbb{N}^2\), for \( k \) from \( 0 \) to \( n \), as long as \(R_{k} \) does not divide \(R_{k -1 } \), that is to say \(R_{k} \neq 0\):
And finally:
$$ a = bq + R \Longrightarrow GCD(a, b)= GCD(b, R) $$
Let \( (a, b) \in \hspace{0.05em}\mathbb{N}^2 \) be two natural numbers with \(a > b \).
Let be the breakdown of \(a \) and \(b \) in prime factors:
$$ \forall n \in \mathbb{N}, \enspace \forall p_n \in \mathbb{P}, \enspace \exists (\alpha_n, \beta_n) \in \hspace{0.05em}\mathbb{N}^2, \enspace \Biggl \{ \begin{gather*} a = p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n} \\ b = p_1^{\beta_1}p_2^{\beta_2}...p_n^{\beta_n} \end{gather*} $$
We know that \( GCD(a, b) \) is the greatest common divisor of \(a \) and \( b \).
The greatest common divisor of two numbers \( A = p^{\alpha} \) and \( B = p^{\beta} \) is:
So, by applying this reasoning to the primary breakdown of \(a \) and \( b \), we do have this:
$$ GCD(a, b) = p_1^{min \{ \alpha_1, \beta_1\}} \times p_2^{min\{\alpha_2, \beta_2\}} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{min \{ \alpha_n, \beta_n\}} $$
Let \((a, b) \in \hspace{0.05em}\mathbb{Z}^2\) be two integers with \(a > b \).
Let us start from the hypothesis that \( \delta = a \wedge b \).
Two scenarios then arise: \( b / a \) or \( b \nmid a \).
If \( b \) divides \( a \), then \(\exists q \in \mathbb{N}\), such as \( q < a\),
We then notice that \( \delta = b \) and it can be written:
$$ \delta = au + bv, \enspace with \enspace \Biggl \{ \begin{gather*} u = 0\\ v = 1 \end{gather*} $$
In this case, \( \exists q_0 \in \mathbb{Z}, \enspace \exists R_0 \in \mathbb{N}, \enspace 0 < R_0 < b\),
But, we know by the property seen above that:
So in our case:
So, \( \delta = R_0 \) because \( R_0 \) is the last non-zero remainder of the Euclid's algorithm, and:
$$ \delta = au + bv, \enspace with \enspace \Biggl \{ \begin{gather*} u = 1\\ v = -q_0 \end{gather*} $$
So, \( \exists q_1 \in \mathbb{Z}, \enspace \exists R_1 \in \mathbb{N}, \enspace 0 < R_1 < R_0 \),
So, \( \delta = R_1 \) and:
$$ \delta = au + bv \enspace with \enspace \Biggl \{ \begin{gather*} u = -q_1 \\ v = -1 + q_0 q_1 \end{gather*} $$
We continue the Euclid's algorithm until the last non-zero remainder is \( GCD \).
Thus, in any case:
$$ \delta = a \wedge b \hspace{0.2em} \Longrightarrow \hspace{0.2em} \exists (u, v) \in \hspace{0.05em}\mathbb{Z}^2, \enspace au + bv = \delta \qquad (Bézout's \ identity) $$
This property is known as The Bézout's identity.
Let \((a, b) \in \hspace{0.05em}\mathbb{Z}^2\) be two integers.
If \( \delta = a \wedge b\), then \( \delta / a \) and \( \delta / b \), so:
$$ \Biggl \{ \begin{gather*} a = \delta a' \\ b = \delta b' \end{gather*} $$
If \( a' \) and \( b' \) were not coprime, we would have then the existence of a divisor \( d \), other than \( 1 \), and such as:
$$ \Biggl \{ \begin{gather*} a' = d a'' \\ b' = d b'' \end{gather*} $$
Which would mean that it exists a common divisor \( d \) greater than \( \delta \).
Which is absurd, so \( a' \) and \( b' \) are necessarily coprime.
We then imperatively have \(a' \wedge b' = 1\).
$$ \delta = a \wedge b \hspace{0.2em} \Longleftrightarrow \hspace{0.2em} \exists (a', b') \in \mathbb{N}, \enspace \Biggl \{ \begin{gather*} a = \delta a' \\ b = \delta b'\end{gather*} \enspace \enspace (with \enspace a' \wedge b' = 1)$$
And finally,
$$ \delta = a \wedge b \hspace{0.2em} \Longrightarrow \hspace{0.2em} \exists (a', b') \in \mathbb{N}, \enspace \Biggl \{ \begin{gather*} a = \delta a' \\ b = \delta b'\end{gather*} \enspace \enspace (with \enspace a' \wedge b' = 1)$$
Let \((a, b) \in \hspace{0.05em}\mathbb{Z}^2\) be two integers with \(a > b \), and also \(k \in \mathbb{Z}\).
Let us note \( \delta = GCD(a, b)\) and \( \Delta = GCD(ka, kb) \).
We know from the property of common divisors of two numbers and their \(GCD\) that:
The set of common divisors of \( a \) and \( b \) is the set of divisors of \( GCD(a, b) \).
So,
$$ \Biggl \{ \begin{gather*} k / ka \\ k / kb \end{gather*} \Longrightarrow k/\Delta $$
If \( k/\Delta \), this also mean that:
Likewise, as \( \Delta = GCD(ka, kb) \), so:
$$ \Biggl \{ \begin{gather*} \Delta / ka \\ \Delta / kb \end{gather*} $$
But \( \Delta = kc \), and with the simplification property of divisibility:
$$ \Biggl \{ \begin{gather*} kc / ka \Longrightarrow c / a \\ kc / kb \Longrightarrow c / b \end{gather*} $$
And again with the property of common divisors of two numbers and their \(GCD\):
$$ \Biggl \{ \begin{gather*} c / a \\ c / b \end{gather*} \Longrightarrow c/\delta $$
Well,
Moreover,
$$ \Biggl \{ \begin{gather*} \delta / a \Longrightarrow k\delta / ka \\ \delta / a \Longrightarrow k\delta / kb \end{gather*} \Longrightarrow k\delta/\Delta \qquad (2) $$
Both assertions \((1)\) et \((2)\) show that:
$$ \Biggl \{ \begin{gather*} \Delta/k \delta \qquad (1) \\ k\delta/\Delta \qquad (2) \end{gather*} \Longrightarrow \Delta = k\delta $$
And finally,
$$ GCD(ka, kb) = k.GCD(a, b) $$
Let be the breakdown of \(a \) and \(b \) in prime factors:
$$ \forall n \in \mathbb{N}, \enspace \forall p_n \in \mathbb{P}, \enspace \exists (\alpha_n, \beta_n) \in \hspace{0.05em}\mathbb{N}^2, \enspace \Biggl \{ \begin{gather*} a = p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n} \\ b = p_1^{\beta_1}p_2^{\beta_2}...p_n^{\beta_n} \end{gather*} $$
We saw above that \(GCD(a,b)\) can be written:
Furthermore, the \(LCM(a,b)\) can be written:
By performing the product of \(GCD(a,b) \times LCM(a,b)\):
However, this product is equivalent to \((ab)\):
And finally,
$$ GCD(a, b) \times LCM(a, b) = ab $$
Recap table of the \(GCD(A,B)\)