French flag Arrows English flag
Sun Arrows Moon
Return Index

The properties of the GCD of two natural numbers

For all \( (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b \), we notice:

  1. \( \delta = a \wedge b = GCD(a, b) \);

  2. \( GCD(a, b) \) is the greatest common divisor of \( a \) and \( b \).

    It is the last non-zero remainder \( R_n \) of the Euclidian division of \( a \) by \( b \) in the Euclid's algorithm.

  3. \( \mathcal{D}(a, b)\) the set of common divisors of \( a \) and \( b \);

  4. \( \mathcal{D}(\delta)\) the set of all divisors of \( GCD(a, b) \).


Equality between the divisors of a and b and the divisors of thier GCD

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b, $$

$$ \mathcal{D}(a, b) = \mathcal{D}( GCD(a, b) ) $$

The set of common divisors of \( a \) and \( b \) is the set of divisors of \( GCD(a, b) \).


Equality between the successives GCD of the Euclid's algorithm

$$ \forall (a, b, q) \in (\mathbb{N})^3, \enspace a > b, \enspace \forall R \in \mathbb{N^*}, \enspace 0 < R < b, $$

$$ a = bq + R \Longrightarrow GCD(a, b) = GCD(b, R) $$


Breakdown in prime factors

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b,$$

Let be the breakdown of \(a \) and \(b \) in prime factors:

$$ \forall n \in \mathbb{N}, \enspace \forall p_n \in \mathbb{P}, \enspace \exists (\alpha_n, \beta_n) \in \hspace{0.05em}\mathbb{N}^2, \enspace \Biggl \{ \begin{gather*} a = p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n} \\ b = p_1^{\beta_1}p_2^{\beta_2}...p_n^{\beta_n} \end{gather*} $$

So,

$$ GCD(a, b) = p_1^{min \{ \alpha_1, \beta_1\}} \times p_2^{min\{\alpha_2, \beta_2\}} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{min \{ \alpha_n, \beta_n\}} $$


The Bézout's identity

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b, $$

$$ \delta = a \wedge b \hspace{0.2em} \Longrightarrow \hspace{0.2em} \exists (u, v) \in \hspace{0.05em}\mathbb{Z}^2, \enspace au + bv = \delta \qquad (Bézout's \ identity)$$


Breakdown of two numbers in relation to their GCD

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, $$

$$ \delta = a \wedge b \hspace{0.2em} \Longrightarrow \hspace{0.2em} \exists (a', b') \in \mathbb{N}, \enspace \Biggl \{ \begin{gather*} a = \delta a' \\ b = \delta b'\end{gather*} \enspace \enspace (with \enspace a' \wedge b' = 1)$$


Linearity

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b, \enspace \forall k \in \mathbb{Z},$$

$$ GCD(ka, kb) = k.GCD(a, b) $$


Link between GCD and LCM

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b,$$

$$ GCD(a, b) \times LCM(a, b) = ab $$


Recap table of the \(GCD(A,B)\)


Demonstration


Equality between the divisors of a and b and the divisors of thier GCD

Let be \((a, b) \in \hspace{0.05em}\mathbb{N}^2\) and \( \delta = GCD(a, b) \).

As \( \delta \) is the greatest common divisor of \( a \) and \( b \), so:

$$ \Biggl \{ \begin{gather*} \delta / a \Longrightarrow a = k\delta \\ \delta / b \Longrightarrow b = k'\delta \end {gather*} \qquad (1) $$

Let suppose it exists \( d \ ( d \in \mathbb{N}) \), a commun divisor of \( a \) and \( b \), such as \( d < \delta \), and which does not divide \( \delta \).

So, we would have:

$$ \Biggl \{ \begin{gather*} d / a \Longrightarrow a = qd \\ d / b \Longrightarrow b = q'd \\ d \nmid \delta \Longrightarrow \delta = Qd + R \end {gather*} \qquad (2) $$

As a result, both expressions \( (1) \) et \( (2) \) combined give:

$$ \Biggl \{ \begin{gather*} a = k\delta = qd \Longrightarrow k ( Qd + R ) = qd \\ b = k'\delta = q'd \Longrightarrow k' ( Qd + R ) = q'd \end {gather*} $$

$$ \Biggl \{ \begin{gather*} a = kQd + k R = qd \\ b = k'Qd + k' R = q'd \end {gather*} \qquad (3) $$

The only way for \( (3) \) to make sense would be that:

$$ \Biggl \{ \begin{gather*} k = d \\ k' = d \end {gather*} \enspace \Longrightarrow \enspace k = k' = d $$

But, \( k \neq k' \) since \( a \neq b \) and \( \delta \) is unique, that does not make sense.

We then clearly see that any number \( d \), common divisor of \( a \) and \( b \) also divides their \(GCD\).


So that the set all of common divisors of \( a \) and \( b \) is also the set of the divisors of \( GCD(a, b) \).

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b, $$

$$ \mathcal{D}(a, b) = \mathcal{D}( GCD(a, b) ) $$

We can find all this divisors by the breakdown in prime factors of \( GCD(a, b) \).


Equality between the successives GCD of the Euclid's algorithm

Let \((a, b) \in \hspace{0.05em}\mathbb{N}^2\) two natural numbers.

If \(b\) does not divide \(a\), we know that:

$$ \exists q_0 \in (\mathbb{N}), \enspace \exists R_0 \in \mathbb{N^*}, \enspace 0 < R_0 < b, \enspace a = bq_0 + R_0 $$

Likewise, if \(R_0\) does not divide \(b\):

$$ \exists q_1 \in (\mathbb{N}), \enspace \exists R_1 \in \mathbb{N^*}, \enspace 0 < R_1 < R_0 , \enspace b = R_0 q_1 + R_1 $$

And so on...


However, we know from the Euclid's algorithm that:

\( \forall (k,n) \in \hspace{0.05em}\mathbb{N}^2\), for \( k \) from \( 0 \) to \( n \), as long as \(R_{k} \) does not divide \(R_{k -1 } \), that is to say \(R_{k} \neq 0\):

$$ GCD(a, b) = GCD(b, R_0) = GCD(R_0, R_1) = \enspace ... \enspace = GCD(R_{n - 1}, R_n) = R_n \neq 0$$


And finally:

$$ \forall (a, b, q) \in (\mathbb{N})^3, \enspace a > b, \enspace \forall R \in \mathbb{N^*}, \enspace 0 < R < b, $$

$$ a = bq + R \Longrightarrow GCD(a, b)= GCD(b, R) $$


Breakdown in prime factors

Let \( (a, b) \in \hspace{0.05em}\mathbb{N}^2 \) be two natural numbers with \(a > b \).

Let be the breakdown of \(a \) and \(b \) in prime factors:

$$ \forall n \in \mathbb{N}, \enspace \forall p_n \in \mathbb{P}, \enspace \exists (\alpha_n, \beta_n) \in \hspace{0.05em}\mathbb{N}^2, \enspace \Biggl \{ \begin{gather*} a = p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n} \\ b = p_1^{\beta_1}p_2^{\beta_2}...p_n^{\beta_n} \end{gather*} $$

We know that \( GCD(a, b) \) is the greatest common divisor of \(a \) and \( b \).

The greatest common divisor of two numbers \( A = p^{\alpha} \) and \( B = p^{\beta} \) is:

$$ D= p^{min \{ \alpha, \beta\}} $$

we have

So, by applying this reasoning to the primary breakdown of \(a \) and \( b \), we do have this:

$$ GCD(a, b) = p_1^{min \{ \alpha_1, \beta_1\}} \times p_2^{min\{\alpha_2, \beta_2\}} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{min \{ \alpha_n, \beta_n\}} $$


The Bézout's identity

Let \((a, b) \in \hspace{0.05em}\mathbb{Z}^2\) be two integers with \(a > b \).

Let us start from the hypothesis that \( \delta = a \wedge b \).


Two scenarios then arise: \( b / a \) or \( b \nmid a \).

  1. If \( b \) divides \( a \)
  2. If \( b \) divides \( a \), then \(\exists q \in \mathbb{N}\), such as \( q < a\),

    $$ a = bq \Longrightarrow a \wedge b = b $$

    We then notice that \( \delta = b \) and it can be written:

    $$ \delta = au + bv, \enspace with \enspace \Biggl \{ \begin{gather*} u = 0\\ v = 1 \end{gather*} $$

  3. If \( b \) does not divide \( a \)
  4. In this case, \( \exists q_0 \in \mathbb{Z}, \enspace \exists R_0 \in \mathbb{N}, \enspace 0 < R_0 < b\),

    $$ a = bq_0 + R_0 $$

    But, we know by the property seen above that:

    $$ \forall (a, b, q) \in (\mathbb{N})^3, \enspace \forall R \in \mathbb{N^*}, $$

    $$ a = bq + R \Longrightarrow GCD(a, b) = GCD(b, R) $$

    So in our case:

    $$ a = bq_0 + R_0 \Longrightarrow a \wedge b = b \wedge R_0 $$

    1. - If \( R_0 \) divide \( b \)
    2. So, \( \delta = R_0 \) because \( R_0 \) is the last non-zero remainder of the Euclid's algorithm, and:

      $$ \delta = R_0 = a - bq_0 $$

      $$ \delta = au + bv, \enspace with \enspace \Biggl \{ \begin{gather*} u = 1\\ v = -q_0 \end{gather*} $$

    3. - If \( R_0 \) does not divide \( b \)
    4. So, \( \exists q_1 \in \mathbb{Z}, \enspace \exists R_1 \in \mathbb{N}, \enspace 0 < R_1 < R_0 \),

      $$ b = R_0q_1 + R_1 \Longrightarrow a \wedge b = b \wedge R_0 = R_0 \wedge R_1 $$

      1. - If \( R_1 \) divides \( R_0 \)
      2. So, \( \delta = R_1 \) and:

        $$ \delta = R_1 = b - R_0q_1 $$

        $$ \delta = R_1 = b - (a - bq_0)q_1 $$

        $$\delta = R_1 = -q_1 a + b(1 + q_0 q_1)$$

        $$ \delta = au + bv \enspace with \enspace \Biggl \{ \begin{gather*} u = -q_1 \\ v = -1 + q_0 q_1 \end{gather*} $$

      3. - If \( R_1 \) does not divide \( R_0 \)
      4. We continue the Euclid's algorithm until the last non-zero remainder is \( GCD \).


Thus, in any case:

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b, $$

$$ \delta = a \wedge b \hspace{0.2em} \Longrightarrow \hspace{0.2em} \exists (u, v) \in \hspace{0.05em}\mathbb{Z}^2, \enspace au + bv = \delta \qquad (Bézout's \ identity) $$

This property is known as The Bézout's identity.


Breakdown of two numbers in relation to their GCD

Let \((a, b) \in \hspace{0.05em}\mathbb{Z}^2\) be two integers.

If \( \delta = a \wedge b\), then \( \delta / a \) and \( \delta / b \), so:

$$ \Biggl \{ \begin{gather*} a = \delta a' \\ b = \delta b' \end{gather*} $$

If \( a' \) and \( b' \) were not coprime, we would have then the existence of a divisor \( d \), other than \( 1 \), and such as:

$$ \Biggl \{ \begin{gather*} a' = d a'' \\ b' = d b'' \end{gather*} $$

Which would mean that it exists a common divisor \( d \) greater than \( \delta \).

Which is absurd, so \( a' \) and \( b' \) are necessarily coprime.

We then imperatively have \(a' \wedge b' = 1\).


$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b, $$

$$ \delta = a \wedge b \hspace{0.2em} \Longleftrightarrow \hspace{0.2em} \exists (a', b') \in \mathbb{N}, \enspace \Biggl \{ \begin{gather*} a = \delta a' \\ b = \delta b'\end{gather*} \enspace \enspace (with \enspace a' \wedge b' = 1)$$


And finally,

$$ \delta = a \wedge b \hspace{0.2em} \Longrightarrow \hspace{0.2em} \exists (a', b') \in \mathbb{N}, \enspace \Biggl \{ \begin{gather*} a = \delta a' \\ b = \delta b'\end{gather*} \enspace \enspace (with \enspace a' \wedge b' = 1)$$


Linearity

Let \((a, b) \in \hspace{0.05em}\mathbb{Z}^2\) be two integers with \(a > b \), and also \(k \in \mathbb{Z}\).

Let us note \( \delta = GCD(a, b)\) and \( \Delta = GCD(ka, kb) \).

We know from the property of common divisors of two numbers and their \(GCD\) that:

The set of common divisors of \( a \) and \( b \) is the set of divisors of \( GCD(a, b) \).

So,

$$ \Biggl \{ \begin{gather*} k / ka \\ k / kb \end{gather*} \Longrightarrow k/\Delta $$

If \( k/\Delta \), this also mean that:

$$ \exists c \in \mathbb{Z}, \enspace \Delta = kc $$

Likewise, as \( \Delta = GCD(ka, kb) \), so:

$$ \Biggl \{ \begin{gather*} \Delta / ka \\ \Delta / kb \end{gather*} $$

But \( \Delta = kc \), and with the simplification property of divisibility:

$$ \Biggl \{ \begin{gather*} kc / ka \Longrightarrow c / a \\ kc / kb \Longrightarrow c / b \end{gather*} $$

And again with the property of common divisors of two numbers and their \(GCD\):

$$ \Biggl \{ \begin{gather*} c / a \\ c / b \end{gather*} \Longrightarrow c/\delta $$

Well,

$$ c / \delta \Longrightarrow kc/k \delta \Longrightarrow \Delta/k \delta \qquad (1) $$

Moreover,

$$ \Biggl \{ \begin{gather*} \delta / a \Longrightarrow k\delta / ka \\ \delta / a \Longrightarrow k\delta / kb \end{gather*} \Longrightarrow k\delta/\Delta \qquad (2) $$

Both assertions \((1)\) et \((2)\) show that:

$$ \Biggl \{ \begin{gather*} \Delta/k \delta \qquad (1) \\ k\delta/\Delta \qquad (2) \end{gather*} \Longrightarrow \Delta = k\delta $$

And finally,

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b, \enspace \forall k \in \mathbb{Z},$$

$$ GCD(ka, kb) = k.GCD(a, b) $$


Link between GCD and LCM

Let be the breakdown of \(a \) and \(b \) in prime factors:

$$ \forall n \in \mathbb{N}, \enspace \forall p_n \in \mathbb{P}, \enspace \exists (\alpha_n, \beta_n) \in \hspace{0.05em}\mathbb{N}^2, \enspace \Biggl \{ \begin{gather*} a = p_1^{\alpha_1}p_2^{\alpha_2}...p_n^{\alpha_n} \\ b = p_1^{\beta_1}p_2^{\beta_2}...p_n^{\beta_n} \end{gather*} $$

We saw above that \(GCD(a,b)\) can be written:

$$ GCD(a, b) = p_1^{min \{ \alpha_1, \beta_1\}} \times p_2^{min\{\alpha_2, \beta_2\}} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{min \{ \alpha_n, \beta_n\}} $$

Furthermore, the \(LCM(a,b)\) can be written:

$$ LCM(a, b) = p_1^{max \{ \alpha_1, \beta_1\}} \times p_2^{max\{\alpha_2, \beta_2\}} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{max \{ \alpha_n, \beta_n\}} $$

By performing the product of \(GCD(a,b) \times LCM(a,b)\):

$$ GCD(a, b) \times LCM(a, b) = p_1^{min \{ \alpha_1, \beta_1\}} \times p_1^{max \{ \alpha_1, \beta_1\}} \times p_2^{min \{ \alpha_2, \beta_2\}} \times p_2^{max\{\alpha_2, \beta_2\}} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{min \{ \alpha_n, \beta_n\}} \times p_n^{max \{ \alpha_n, \beta_n\}} $$

$$ GCD(a, b) \times LCM(a, b) = p_1^{min \{ \alpha_1, \beta_1\} + max \{ \alpha_1, \beta_1\}} \times p_2^{min \{ \alpha_2, \beta_2\} + max\{\alpha_2, \beta_2\}} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{min \{ \alpha_n, \beta_n\} + max \{ \alpha_n, \beta_n\}} $$

$$ GCD(a, b) \times LCM(a, b) = p_1^{\alpha_1 + \beta_1} \times p_2^{\alpha_2+ \beta_2} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{ \alpha_n+ \beta_n} $$

$$ GCD(a, b) \times LCM(a, b) = p_1^{\alpha_1}p_1^{\beta_1} \times p_2^{\alpha_2} p_2^{\beta} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{ \alpha_n}p_n^{ \beta} $$

However, this product is equivalent to \((ab)\):

$$ ab = p_1^{\alpha_1}p_1^{\beta_1} \times p_2^{\alpha_2} p_2^{\beta} \hspace{0.2em} \times \hspace{0.2em} ... \hspace{0.2em} \times \hspace{0.2em} p_n^{ \alpha_n}p_n^{ \beta} $$


And finally,

$$ \forall (a, b) \in \hspace{0.05em}\mathbb{N}^2, \enspace a > b,$$

$$ GCD(a, b) \times LCM(a, b) = ab $$


Recap table of the \(GCD(A,B)\)

Return Index
Scroll top Go to the top of the page