French flag Arrows English flag
Sun Arrows Moon
Return Index

Analytical geometry in space

Let be \((O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})\) an orthonormal coordinate system in space.

Orthonormal coordinate system in space

Lines and planes

Parametric equation of a straight line

Parametric equation of a straight line in space

The parametric equation of a straight line \(\mathcal{D}\) in space, passing through a point \(A(x_0, y_0, z_0)\) and directed by a vector \(\vec{u}\begin{pmatrix} a\\ b \\c \end{pmatrix} \) (with \(a, b, c \) all three non-zero) is:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$

$$ M(x, y, z) \in \mathcal{D}(A, \vec{u}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x = at + x_0 \\ y = bt + y_0 \\z = ct + z_0 \end{Bmatrix} $$

$$ with \enspace \Biggl \{ \begin{align*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \end{align*} $$


Equation of a plane

Equation of a plane in space

The equation of a place \((\mathcal{P})\) in space, passing through a point \(A(x_0, y_0, z_0)\) and orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\) (with \(a, b, c \) all three non-zero) is:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$

$$ M(x, y, z) \in \mathcal{P}(A, \vec{n}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} ax + by + cz + d = 0$$

$$ with \enspace \Biggl \{ \begin{align*} (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \\ d = -ax_0 - by_0 -c z_0 \end{align*} $$


Distance from a point to a plane

Distance from a point to a plane in space

Let \(\mathcal{P}\) be a plane orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\) (with \(a, b, c \) all three non-zero), having as equation:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, \ ax + by + cz + d = 0$$


The distance from a point \(A(x_0, y_0, z_0)\) in relation to this plane \((\mathcal{P})\) orthogonally projecting on this plane at point \(H(x, y, z)\) is worth:

$$ d(A, \mathcal{P}) = \frac{\Bigl | -ax_0 - by_0 -c z_0 -d \Bigr |}{\sqrt{a^2 + b^2 + c^2}} $$

$$ with \enspace \Biggl \{ \begin{align*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \\ d = -ax - by -c z \end{align*} $$


Projection of a sum of vectors upon a plane

The projection of a sum of vectors is the sum of each vector's projection

Projection of the sum of two vectors, sum of the two respective projections

$$ \forall n \in \mathbb{N}, \ \forall (\vec{u_1}, \vec{u_2}, \ ..., \vec{u_n}), $$

$$ proj\left(\sum_{k=0}^n \overrightarrow{ u_k} \right) = \sum_{k=0}^n proj(\overrightarrow{u_k})$$



Geometrical figures

Equation of a sphere

Equation of a sphere in space

The sphere \((\mathcal{S})\) having a radius \(R\) and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$

$$ M \in \mathcal{S}(A, R) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} R^2 = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 $$

$$ (with \enspace (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3) $$


Equation of a cylinder

Equation of a cylinder in space

The cylinder\((\mathcal{C})\) having a radius \(r\) and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ \forall (x, y) \in \hspace{0.05em}\mathbb{R}^2, $$

$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} r^2 = (x-x_0)^2 + (y-y_0)^2 $$

$$ (with \enspace (x_0, y_0) \in \hspace{0.05em} \mathbb{R}^2) $$


Equation of a cone

Equation of a cone in space

The cone \((\mathcal{C})\) having a half-angle \( \theta\), and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$

$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} (x- x_0)^2 + (y- y_0)^2 = k(z-z_0)^2 $$

$$ with \enspace \Biggl \{ \begin{align*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ k = tan^2(\theta) \end{align*} $$


Coordinates system

From cartesian to spherical coordinates

  1. Longitude-latitude coordinates
  2. Spherical coordinates: longitude-latitude

    $$ \Biggl \{ \begin{align*} x = R \ cos(\varphi) \ cos(\theta) \\ y = R \ cos(\varphi) \ sin(\theta) \\ z = R \ sin(\varphi) \end{align*} \qquad (\theta : longitude- \varphi : latitude) $$

    $$with \enspace \left \{ \begin{align*} R =\sqrt{x^2 +y^2 +z^2 } \\ \theta = arctan \left( \frac{y}{x} \right) \\ \varphi = arcsin \left( \frac{z}{R} \right) \end{align*} \right \}$$

  3. Longitude-colatitude coordinates
  4. Spherical coordinates: longitude-colatitude

    $$ \Biggl \{ \begin{align*} x = R \ sin(\psi) \ cos(\theta) \\ y = R \ sin(\psi) \ sin(\theta) \\ z = R \ cos(\psi) \end{align*} \qquad (\theta : longitude- \psi : colatitude) $$

    $$with \enspace \left \{ \begin{align*} R =\sqrt{x^2 +y^2 +z^2 } \\ \theta = arctan \left( \frac{y}{x} \right) \\ \psi = arccos \left( \frac{z}{R} \right) \end{align*} \right \}$$


Demonstrations

Lines and planes

Parametric equation of a straight line

Let \((\mathcal{D})\) be a straight line in space, passing through a point \(A(x_0, y_0, z_0)\) and directed by a vector \(\vec{u}\begin{pmatrix} a\\ b \\c \end{pmatrix} \) (with \((a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \) three real numbers which are non-zero simultaneously).

Parametric equation of a straight line in space

As \(M \in \mathcal{D}\), so the vectors \(\vec{u}\) and \(\overrightarrow{AM}\) are collinear. Thus:

$$ M(x, y, z) \in \mathcal{D}(A, \vec{u}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \overrightarrow{AM} = t \times \overrightarrow{u}$$

$$ \Longleftrightarrow \exists^{\infty} t \in \mathbb{R}, \enspace \begin{pmatrix} x -x_0 \\ y - y_0 \\z - z_0 \end{pmatrix} = \hspace{0.1em} \begin{pmatrix} ta \\ tb \\tc \end{pmatrix} $$

$$ \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x -x_0 = at\\ y - y_0 = bt \\z - z_0 = ct \end{Bmatrix} $$


The parametric equation of a straight line \(\mathcal{D}\) in space, passing through a point \(A(x_0, y_0, z_0)\) and directed by a vector \(\vec{u}\begin{pmatrix} a\\ b \\c \end{pmatrix} \) (with \((a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \) three real numbers which are non-zero simultaneously) is:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$

$$ M(x, y, z) \in \mathcal{D}(A, \vec{u}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x = at + x_0 \\ y = bt + y_0 \\z = ct + z_0 \end{Bmatrix} $$

$$ with \enspace \Biggl \{ \begin{align*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \end{align*} $$


The parameter \(t\) is a free parameter that can take any value.

In fact, the line \((\mathcal{D})\) extending to infinity, we obtain a formation of this latter by varying \(t\), leading to the intersection of three planes corresponding respectively to the three equations; which forms a series of points in space.

Parametric equation of a straight line in space - superposition of planes forming a line according to t

Equation of a plane

Let \((\mathcal{P})\) be a plane in space, passing through a point \(A(x_0, y_0, z_0)\) and orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\) (with \((a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \) three real numbers which are non-zero simultaneously).

Equation of a plane in space

So, any point \(M(x, y, z)\) belonging to this plane is orthogonal to \(\vec{n}\).

$$ M(x, y, z) \in \mathcal{P}(A, \vec{n}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \overrightarrow{MA} \perp \vec{n}$$

Two orthogonal vectors have their scalar product worthing zero.

$$ \Longleftrightarrow \hspace{0.1em} \overrightarrow{MA} .\vec{n} = 0$$

$$ \Longleftrightarrow \begin{pmatrix} x -x_0 \\ y - y_0 \\z - z_0 \end{pmatrix} . \hspace{0.1em} \begin{pmatrix} a \\ b \\c \end{pmatrix} = 0$$

$$ a(x-x_0) + b(y-y_0) + c(z-z_0) = 0 $$

$$ ax - ax_0 + by - by_0 + cz -c z_0 = 0 $$

$$ ax + by + cz \hspace{0.1em} \underbrace{-ax_0 - by_0 -c z_0} _\text{\( (d \hspace{0.1em} \in \hspace{0.05em} \mathbb{R})\)} \hspace{0.1em} = 0 $$

$$ ax + by + cz + d = 0 $$


The equation of a place \((\mathcal{P})\) in space, passing through a point \(A(x_0, y_0, z_0)\) and orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\) is:

$$ \forall (x, y, z) \in \hspace{0.05em}\mathbb{R}^3, $$

$$ M(x, y, z) \in \mathcal{P}(A, \vec{n}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} ax + by + cz + d = 0$$

$$ with \enspace \Biggl \{ \begin{align*} (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \\ d = -ax_0 - by_0 -c z_0 \end{align*} $$


Distance from a point to a plane

Let \((\mathcal{P})\) be a plane in space, orthogonal to a vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\)(with \((a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \) three real numbers which are non-zero simultaneously).

Let \(A(x_0, y_0, z_0)\) be a point orthogonally projecting on \((\mathcal{P})\) at point \(H(x, y, z)\).

Distance from a point to a plane in space

We are trying to estimate the distance \(AH\), shortest distance from the point \(A\) to the plane \((\mathcal{P})\).

By the definition of the scalar product, we do have:

$$ \overrightarrow{AH} .\vec{n} = ||\overrightarrow{AH} || \times ||\overrightarrow{n} || \times cos(\overrightarrow{AH}, \overrightarrow{n}) $$

$$ \overrightarrow{AH} .\vec{n} = AH \times \sqrt{a^2 + b^2 + c^2} \times (\pm 1) \qquad (1)$$

On the other hand, with the calculation of the scalar product by the coordinates product, we do have:

$$ \overrightarrow{AH} .\vec{n} = a(x-x_0) + b(y-y_0) + c(z-z_0) $$

$$ \overrightarrow{AH} .\vec{n} = \hspace{0.1em} \underbrace{ax + by + c z} _\text{\( -d \)} \ -ax_0 - by_0 -c z_0 $$

$$ \overrightarrow{AH} .\vec{n} = -ax_0 - by_0 -c z_0 -d \qquad (2) $$


Given that \((1)\) and \((2)\) are equal, being the smae scalar product, we now have:

$$ AH \times \sqrt{a^2 + b^2 + c^2} \times (\pm 1) = -ax_0 - by_0 -c z_0 -d $$

Calculant une distance, on peut passer en valeur absolue :

$$ \Bigl | AH \times \sqrt{a^2 + b^2 + c^2} \times (\pm 1) \Bigr | = \Bigl | -ax_0 - by_0 -c z_0 -d \Bigr | $$

$$AH = \frac{\Bigl | -ax_0 - by_0 -c z_0 -d \Bigr |}{\Bigl |\sqrt{a^2 + b^2 + c^2} \times (\pm 1) \Bigr |} $$

$$AH = \frac{\Bigl | -ax_0 - by_0 -c z_0 -d \Bigr |}{\sqrt{a^2 + b^2 + c^2}} $$


The distance from a point \(A(x_0, y_0, z_0)\) in relation to this plane \((\mathcal{P})\) orthogonally projecting on this plane at point \(H(x, y, z)\) is worth:

$$ d(A, \mathcal{P}) = \frac{\Bigl | -ax_0 - by_0 -c z_0 -d \Bigr |}{\sqrt{a^2 + b^2 + c^2}} $$

$$ with \enspace \Biggl \{ \begin{align*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ (a, b, c) \in \hspace{0.05em} \mathbb{R}^3 \ three \ real\ numbers\ which \ are \ non-zero \ simultaneously \\ d = -ax - by -c z \end{align*} $$


Projection of a sum of vectors upon a plane

In this part, the term projection will always means orhtogonal projection.

Let \((\mathcal{P})\) be a plane having as normal vector \(\vec{n}\begin{pmatrix} a\\ b \\c \end{pmatrix}\), and two non-null vectors being non-collinear to this plane, \(\vec{u}\begin{pmatrix} x_1\\ y_1 \\z_1 \end{pmatrix}\) and \(\vec{v}\begin{pmatrix} x_2\\ y_2 \\z_2\end{pmatrix}\).

Let us call \(\vec{u'}\) and \(\vec{v'}\) the respective projections of the two vectors \(\vec{u}\) and \(\vec{v}\) upon this plane.

Projection of two vectors upon a plane

For the sake of simplicity, we placed the points \(A, B, C\) as well as their respective projection \(A', B', C'\).


Now, let \(\vec{w} = \vec{u} + \vec{v}\), the sum of vectors \(\vec{u}\) and \(\vec{v}\), and the vector \(\vec{w'}\) being the projection of \( \vec{w}\) on this plane.

Projection of the sum of two vectors upon a plane

In the case of the initial points \(A, B, C\) and those of their respective projection \(A', B', C'\), the Chasles relation applied:

Projection of the sum of two vectors, sum of the two respective projections

$$ \Biggl \{ \begin{align*} \vec{u} + \vec{v} = \vec{w} \\ \vec{u}' + \vec{v}' = \ \vec{w}' \end{align*} $$

Therefore,

The projection of a sum of vectors is the sum of each vector's projection

$$ \forall n \in \mathbb{N}, \ \forall (\vec{u_1}, \vec{u_2}, \ ..., \vec{u_n}), $$

$$ proj\left(\sum_{k=0}^n \overrightarrow{ u_k} \right) = \sum_{k=0}^n proj(\overrightarrow{u_k})$$


Geometrical figures

Equation of a sphere

Let \((\mathcal{S})\) be a sphere having a radius \(R\) and centered at point \(A(x_0, y_0, z_0)\).

Equation of a sphere in space

On this sphere, every point every poin \(M(x, y, z)\) is equidistant from the point \(A\), which is worth the length of the radius \(R\).

We know that using the the Pythagorean theorem, that the distance \( AB\) in a three-dimensional space is worth:

$$\forall (A, B) \in \hspace{0.05em} (O, \vec{x}, \vec{y}, \vec{z})^2, $$

$$AB =\sqrt{(x_b - x_a)^2 + (y_b - y_a)^2 + (z_b - z_a)^2 }$$

So,

$$ M \in \mathcal{S}(A, R) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} AM = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 }$$

$$ R = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 }$$

$$ R^2 = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 $$


The sphere \((\mathcal{S})\) of radius \(R\) and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ M \in \mathcal{S}(A, R) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} R^2 = (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 $$

$$ (with \enspace (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3) $$


Equation of a cylinder

Let \((\mathcal{C})\) be a vertical cylinder of radius \(r\) and centered at point \(A(x_0, y_0, z_0)\).

Equation of a cylinder in space

In the plane \((O, \overrightarrow{i}, \overrightarrow{j})\), the cylinder describes a circle.

We know that using the the Pythagorean theorem, that the distance \( AB\) in a plane is worth:

$$\forall (A, B) \in \hspace{0.05em} (O, \vec{x}, \vec{y})^2, $$

$$AB = \sqrt{ (x_b - x_a)^2 + (y_b - y_a)^2} $$

We then have,

$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} AM = \sqrt{(x-x_0)^2 + (y-y_0)^2 }$$

$$ r = \sqrt{(x-x_0)^2 + (y-y_0)^2 }$$

$$ r^2 = (x-x_0)^2 + (y-y_0)^2 $$

The vertical axis \(z\) can take any value, so it is a free variable.


The cylinder \((\mathcal{C})\) having a radius \(r\) and centered at point \(A(x_0, y_0, z_0)\) has for equation in space:

$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} r^2 = (x-x_0)^2 + (y-y_0)^2 $$

$$ (with \enspace (x_0, y_0) \in \hspace{0.05em} \mathbb{R}^2) $$


Equation of a cone

Let \((\mathcal{C})\) a vertical cone have as half-angle \( \theta\), and centered at point \(A(x_0, y_0, z_0)\).

Equation of a cone in space

In the figure below, we can see that:

$$ M \in \mathcal{C}(A, \theta) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} tan(\theta) = \frac{AM'}{AM} $$

$$ \Longleftrightarrow \hspace{0.1em} tan(\theta) = \frac{\sqrt{ (x- x_0)^2 + (y- y_0)^2} }{|z-z_0|} $$

$$ tan^2(\theta) = \ \frac{ (x- x_0)^2 + (y- y_0)^2 }{(z-z_0)^2} $$

$$ (x- x_0)^2 + (y- y_0)^2 = (z-z_0)^2 tan^2(\theta) $$


The cone \((\mathcal{C})\) have as half-angle \( \theta\), and centered at point \(A(x_0, y_0, z_0)\) \(A(x_0, y_0, z_0)\) has for equation in space:

$$ M \in \mathcal{C}(A, r) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} (x- x_0)^2 + (y- y_0)^2 = k(z-z_0)^2 $$

$$ with \enspace \Biggl \{ \begin{align*} (x_0, y_0, z_0) \in \hspace{0.05em} \mathbb{R}^3 \\ k = tan^2(\theta) \end{align*} $$


Coordinates system

From cartesian to spherical coordinates

In some cases, it can be useful to use spherical coordinates (in two dimensions : polar coordinates), especially when working with spheres.


  1. Longitude-latitude coordinates
  2. In a usual orthonormal reference frame in space \((O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})\), we represented a point \(M(x, y, z)\).

    Spherical coordinates : longitude-latitude

    Let \(R\) representing the distance from this point to the origin and \(R'\) its projection on the horizontal plane \((O, \overrightarrow{i}, \overrightarrow{j})\).

    Likewise, we called \(\theta\) the angle formed by the abscissa axis \((O, \overrightarrow{i})\) and \(R'\), and also \(\varphi\) the angle formed \(R'\) and \(R\).

    $$ \Biggl \{ \begin{align*} \theta = (\overrightarrow{Ox}, \overrightarrow{R'}) \\ \varphi= (\overrightarrow{R'}, \overrightarrow{R})\end{align*} $$


    In the following figure, we have represented the point \(M'\), projection of point \(M\) on the horizontal plane \((O, \overrightarrow{i}, \overrightarrow{j})\).

    Calculation of the projection of R on the horizontal plane

    With the classic trigonometry rules, we easily see that:

    $$ \Biggl \{ \begin{align*} z = R \ sin(\varphi) \\ R' = R \ cos(\varphi) \end{align*} $$

    Now, working with a front view of the horizontal plane \((O, \overrightarrow{i}, \overrightarrow{j})\), we can calculate the coordinates corresponding to \(x\) and \(y\).

    Calcul of x and y on the horizontal plane

    We do have :

    $$ \Biggl \{ \begin{align*} x = R \ cos(\varphi) \ cos(\theta) \\ y = R \ cos(\varphi) \ sin(\theta) \end{align*} $$

    Finally, the distance \(R\) is easily calculated from cartesian coordinates \((x, y, z)\):

    $$R =\sqrt{x^2 +y^2 +z^2 }$$

    As well, we obtain both angles \(\theta\) and \(\varphi\) by:

    $$ \Biggl \{ \begin{align*} \theta = arctan \left( \frac{y}{x} \right) \\ \varphi = arcsin \left( \frac{z}{R} \right) \end{align*} $$


    So,

    $$ \Biggl \{ \begin{align*} x = R \ cos(\varphi) \ cos(\theta) \\ y = R \ cos(\varphi) \ sin(\theta) \\ z = R \ sin(\varphi) \end{align*} \qquad (\theta : longitude- \varphi : latitude) $$

    $$with \enspace \left \{ \begin{align*} R =\sqrt{x^2 +y^2 +z^2 } \\ \theta = arctan \left( \frac{y}{x} \right) \\ \varphi = arcsin \left( \frac{z}{R} \right) \end{align*} \right \}$$


  3. Longitude-colatitude coordinates
  4. here is another way to represent spherical coordinates; we can use colatitude instead of latitude.

    We then have a new angle \(\psi\) which starts from the vertical axis \(\overrightarrow{Oz}\) towards \(R\) in the antitrigonometric direction.

    Spherical coordinates : longitude-colatitude

    $$ \Biggl \{ \begin{align*} \theta = (\overrightarrow{Ox}, \overrightarrow{R'}) \\ \varphi= (\overrightarrow{Oz}, \overrightarrow{R})\end{align*} $$


    Which gives us, applying the same reasoning:

    $$ \Biggl \{ \begin{align*} x = R \ sin(\psi) \ cos(\theta) \\ y = R \ sin(\psi) \ sin(\theta) \\ z = R \ cos(\psi) \end{align*} \qquad (\theta : longitude- \psi : colatitude) $$

    $$with \enspace \left \{ \begin{align*} R =\sqrt{x^2 +y^2 +z^2 } \\ \theta = arctan \left( \frac{y}{x} \right) \\ \psi = arccos \left( \frac{z}{R} \right) \end{align*} \right \}$$


Examples

  1. Intersection between two planes\(: \mathcal{P} \cap \mathcal{P}' \)

  2. Let us find the intersection \((\mathcal{P} \cap \mathcal{P}') \) between the two planes \((\mathcal{P}) \) and \((\mathcal{P}') \).

    $$ (\mathcal{S}) \ \Biggl \{ \begin{align*} \ \ 3x \ - \ y \ + z \hspace{1.8em}= 0 \qquad (\mathcal{P}) \\ -2x +2y + z + 1 = 0 \qquad (\mathcal{P}') \end{align*} $$

    We scale the system \((\mathcal{S})\) performing the linear combination \( 2(\mathcal{P}) \) + \( 3(\mathcal{P}') \).

    $$ (\mathcal{S}) \ \Biggl \{ \begin{align*} 3x - y \ + z = 0 \hspace{5em} (\mathcal{P}) \\ \ \ \ \ 4y +5 z = -3 \qquad \qquad (2(\mathcal{P}) + 3(\mathcal{P}') ) \end{align*} $$

    The system is of the rank \(2\), then the intersection is a straight line which we will note \( (\mathcal{D})\). Moreover, the parameter \( z \) is a free variable and:

    $$z = \frac{4y-3}{5} \Longleftrightarrow y = \frac{-5z-3}{4} $$

    So, we solve the system by going backwards and we find:

    $$ \left \{ \begin{align*} x = \frac{-3z-1}{4} \\ y = \frac{-5z-3}{4} \\ z= z \end{align*} \right \} $$

    We choose as value \( z = 0 \) to fix a point on the line \( (\mathcal{D})\). So \( A\left(-\frac{1}{4},-\frac{3}{4}, 0 \right) \in \mathcal{D}\).

    Furthermore, we see that the vector \(\vec{u}\begin{pmatrix} -\frac{3}{4} \\ - \frac{5}{4} \\ \hspace{1em} 1 \end{pmatrix}\) leads the straight line \( (\mathcal{D})\), then the latter has the equation:

    $$ M(x, y, z) \in \mathcal{D}(A, \vec{u}) \hspace{0.1em} \Longleftrightarrow \hspace{0.1em} \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x + \frac{1}{4} = -\frac{3}{4}t\\ y + \frac{3}{4} = -\frac{5}{4}t \\z = t \end{Bmatrix} $$

    So,

    $$(\mathcal{P} \cap \mathcal{P}')=(\mathcal{D}) \Longleftrightarrow \exists^{\infty} t \in \mathbb{R}, \enspace \begin{Bmatrix} x = -\frac{3}{4}t - \frac{1}{4}\\ y = -\frac{5}{4}t -\frac{3}{4} \\z = t \end{Bmatrix} $$


  3. Intersection between a line and a plane \(: \mathcal{D} \cap \mathcal{P} \)

  4. Let us find the intersection \((\mathcal{D} \cap \mathcal{P}) \) between a line \((\mathcal{D}) \) and a plane \((\mathcal{P}) \).

    $$ (\mathcal{D}) \ \Biggl \{ \begin{align*} x = t-1 \\ y = -2t + 3 \\ z= -t+5 \end{align*} $$

    $$ 2x + y -3z + 6 = 0 \qquad (\mathcal{P})$$

    We inject the coordinates of \((\mathcal{D}) \) in those of \((\mathcal{P}) \), and we solve \((L) \) :

    $$ 2(t-1) -2t + 3 -3(-t+5) + 6 = 0 \qquad (L)$$

    $$ 2t-2-2t+3+3t -15 +6 = 0 \qquad (L)$$

    $$ 3t-8 = 0 \Longleftrightarrow t = \frac{8}{3} \qquad (L)$$

    As \(t \) is unique, there is a point of intersection, which we will note \(A\).

    We thus determine this point using the parametric equation of the line \((\mathcal{D}) \).

    Then this point of intersection is:

    $$ (\mathcal{D} \cap \mathcal{P}) = A\left(\frac{5}{3}; -\frac{7}{3}; \frac{7}{3} \right)$$


  5. Intersection between two lines\(: \mathcal{D} \cap \mathcal{D}' \)

  6. Let us find the intersection \((\mathcal{D} \cap \mathcal{D}') \) between two lines \((\mathcal{D}) \) and \((\mathcal{D}') \).

    $$ (\mathcal{D}) \ \Biggl \{ \begin{align*} x = 2t-1 \\ y = -t-2 \\ z= t+2 \end{align*} $$

    $$ (\mathcal{D}') \ \Biggl \{ \begin{align*} x = s+1 \\ y = 3s-1\\ z= 2s+1\end{align*} $$

    We do the following system:

    $$ (\mathcal{D} \cap \mathcal{D}') \ \Longleftrightarrow \Biggl \{ \begin{align*} 2t-1 = s+1 \\ -t-2 = 3s-1\\ t +2 = 2s+1\end{align*} $$

    $$ (\mathcal{D} \cap \mathcal{D}') \ \Longleftrightarrow \ \Biggl \{ \begin{align*} 2t-s = 5 \ \ \qquad (L_1) \\ -t-3s = 1 \qquad (L_2) \\ t-2s = -1 \qquad (L_3) \end{align*} $$

    We first solve the first two equations. We carry out \( (L_1 + 2 L_2)\):

    $$-7s = 7 \qquad (L_1 + 2 L_2) \ \Longrightarrow \ s = -1 \ \Longrightarrow \ t = 2 $$

    This solution is not suitable for the third one \( (L_3)\) because:

    $$2 - 2\times(-1) = 4\neq -1 $$

    So, as there is no pair \( (t, s) \in \hspace{0.05em} \mathbb{R}^2\) which are suitable for the two parametric equations of the two lines \((\mathcal{D}) \) and \((\mathcal{D}') \), they have no point of intersection.

    $$(\mathcal{D} \cap \mathcal{D}') = \emptyset $$


  7. Intersection between a plane and a sphere \( : \mathcal{P} \cap \mathcal{S} \)

  8. Let us find the intersection \((\mathcal{P} \cap \mathcal{S}) \) between a plane\((\mathcal{P}) \) and a sphere \((\mathcal{S}) \).

    $$ z = \frac{1}{2} \qquad (\mathcal{P}) $$

    $$ x^2 + y^2 + z^2 = 1 \qquad (\mathcal{S}) $$

    We now inject \((\mathcal{P}) \) into \((\mathcal{S}) \):

    $$ x^2 + y^2 = \frac{3}{4} $$

    So, we get an equation for the coordinates \((x,y) \in \hspace{0.05em} \mathbb{R}^2 \). On the other hand, it is the equation of a cone of radius \(R = \frac{\sqrt{3}}{2}\), so it is then necessary to keep the equation of the plane \((\mathcal{P}) \) to fix the cone and therefore obtain a circle.

    So, the intersection between \((\mathcal{P}) \) and \((\mathcal{S}) \) is modelled by the double equation:

    $$ (\mathcal{P} \cap \mathcal{S}) \ \Longleftrightarrow \ \Biggl \{ \begin{align*} x^2 + y^2 = \frac{3}{4} \\ z = \frac{1}{2} \end{align*} $$

    Intersection entre un plan et une sphère
Return Index
Scroll top Go to the top of the page