English flag Arrows French flag
Sun Arrows Moon

$$ (translation \ is \ up \ to \ date !) $$


This site is devoted to mathematics, and especially to demonstrations. It is designed to present certain concepts for middle/high school level (it may be a bit more), and to encourage students learning.


Furthermore, it gives support for my private lessons students, and anyone who wants it.


Josselin DOUINEAU, maths teacher.


List of themes

Polynomials
Limits and continuity
Calculus
Integrals/antiderivatives
Differential equations
Asymptotic analysis
Miscellaneous


Pages structure
Title

1) Formula 1

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, $$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc $$

2) Formula 2

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \enspace \ \Bigl \{ (b+d) \Bigr \} \ \neq 0, $$

$$ \frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$$

3) Récapitulatif


Demonstrations

1) Formula 1

We demonstrate the following formula ...etc.

$$ \frac{a}{c} = \frac{b}{d} $$

$$ \frac{ad}{c} = \frac{bd}{d} $$

$$ \frac{adc}{c} = bc$$

$$...etc.$$

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, $$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc $$

2) Formula 2

We demonstrate this formula by...etc.

$$ \frac{a}{c} = \frac{b}{d} $$

$$ ... $$

$$ ...etc. $$

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \enspace \ \Bigl \{ (b+d) \Bigr \} \ \neq 0, $$

$$ \frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$$


3) Recap table

$$ condition $$

$$ function $$

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, $$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc $$

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \enspace \ \Bigl \{ (b+d) \Bigr \} \ \neq 0, $$

$$ \frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d} $$


Examples

1) Example 1

Here is an example of application of this theorem:

$$ \frac{20 [g]}{6 [L]} = \frac{X [g]}{1 [L]} $$

Let us apply the theorem to find the unknown...etc.