Let \( (n, m) \in \hspace{0.05em} \mathbb{N}^2 \) be two natural numbers and:
- a series of continuous functions \( a_1(x), a_2(x), \hspace{0.2em} ... \hspace{0.2em}, a_n(x) \)
- a series of functions \( f_1(x), f_2(x), \hspace{0.2em} ... \hspace{0.2em}, f_m(x) \)
Let \( y(x) \) be a function of class \( \mathbb{C}^{n}\) on an interval \(I\). We note \(y^{(n)}\) its \(n\)-th derivative.
In the context of solving a linear differential equation of order \(n\) where the right hand side is a linear combination of functions such that \( (E)\):
with for all \( k \in [\![ 1, m ]\!] \), the function \( (y_k) \) as a specific solution of the equation \( (E_k) \) :
The superposition principle tells us that:
$$ y_k \enspace \underline{specific \ solution} \ of \ (\tilde E_k) \Longleftrightarrow (\lambda_1 y_1 + \lambda_2 y_2 \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + \hspace{0.2em} \lambda_m y_m) \ \underline{total \ specific \ solution} \ of \ (E) $$
Let \( (n, m) \in \hspace{0.05em} \mathbb{N}^2 \) be two natural numbers and:
- a series of continuous functions \( a_1(x), a_2(x), \hspace{0.2em} ... \hspace{0.2em}, a_n(x) \)
- a series of functions \( f_1(x), f_2(x), \hspace{0.2em} ... \hspace{0.2em}, f_m(x) \)
Let \( y(x) \) be a function of class \( \mathbb{C}^{n}\) on an interval \(I\). We note \(y^{(n)}\) its \(n\)-th derivative.
We start from the equation \( (E) \), linear differential of order \( n\) where the right hand side is a linear combination of functions.
For all \( k \in [\![ 1, m ]\!] \), we then have a series of equations \( (\tilde E_k) \) to solve:
$$ \left \{ \begin{gather*} a_n(x) y^{(n)}(x) \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + \hspace{0.2em} a_1(x) y'(x) + a_0(x) y(x) = f_1(x) \qquad (\tilde E_1) \\ a_n(x) y^{(n)}(x) \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + \hspace{0.2em} a_1(x) y'(x) + a_0(x) y(x) = f_2(x) \qquad (\tilde E_2) \\ ........................ \\ a_n(x) y^{(n)}(x) \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + \hspace{0.2em} a_1(x) y'(x) + a_0(x) y(x) = f_k(x) \qquad (\tilde E_k) \\ ........................ \\ a_n(x) y^{(n)}(x) \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + \hspace{0.2em} a_1(x) y'(x) + a_0(x) y(x) = f_m(x) \qquad (\tilde E_m) \\ \end{gather*} \right \}$$
In this series of equations, we then notice that:
If each \( y_k \) is a solution for \( (\tilde E_k) \), then each \( y_k \) verifies:
Thereby, by multiplying \( (\tilde E_k) \) by \( \lambda_k \):
Now, thanks to linearity of the derivative, we know that:
So in our case,
Thanks to\( (1) \), we can rearrange it and see that:
This equation shows that:
Previously, we were able to see that each \( \lambda_k y_k \) is solution for \( (\lambda_k \tilde E_k) \):
$$ \left \{ \begin{gather*} a_n(x) (\lambda_1 y_1)^{(n)}(x) \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + a_1(x) \bigl(\lambda_1 y_1 \bigr)(x)' + a_0(x) \bigl(\lambda_1 y_1\bigr)(x) = \lambda_1 f_1(x) \qquad (\lambda_1 \tilde E_1) \\ a_n(x) (\lambda_2 y_2)^{(n)}(x) \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + a_1(x) \bigl(\lambda_2 y_2\bigr)(x) ' + a_0(x) \bigl(\lambda_2 y_2\bigr)(x) = \lambda_2 f_2(x) \qquad (\lambda_2 \tilde E_2) \\ ........................ \\ a_n(x) (\lambda_k y_k)^{(n)}(x) \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + a_1(x) \bigl(\lambda_k y_k \bigr)(x)' + a_0(x) \bigl(\lambda_k y_k \bigr)(x) = \lambda_k f_k(x) \qquad (\lambda_k \tilde E_k) \\ ........................ \\ a_n(x) (\lambda_m y_m)^{(n)}(x) \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + a_1(x) \bigl(\lambda_m y_m\bigr)(x) ' + a_0(x) \bigl(\lambda_m y_m \bigr)(x) = \lambda_m f_m(x) \qquad (\lambda_m \tilde E_m) \\ \end{gather*} \right \} $$
By adding up the \( (\lambda_k \tilde E_k) \) from \(1 \) to \(m \):
Thus, a total specific solution \( y_s \) which will be the addition of all the specific solutions \( \lambda_k y_k \):
In the end, thanks to \( (E-bis) \), we see that this function is indeed a solution of \( ( E) \):
And as a result,
$$ y_k \enspace \underline{specific \ solution} \ of \ (\tilde E_k) \Longleftrightarrow (\lambda_1 y_1 + \lambda_2 y_2 \hspace{0.2em} + \hspace{0.2em} ... \hspace{0.2em} + \hspace{0.2em} \lambda_m y_m) \ \underline{total \ specific \ solution} \ of \ (E) $$
Let \( (E) \) be a first order linear differential equation \( LDE_1 \) with a constant coefficient \( (H) \) its associated homogeneous equation:
$$ \Biggl \{ \begin{align*} y'(x) + 2 y(x) = 2x^2 + 3cos(x) + 1 \qquad (E) \\ y'(x) + 2y(x) = 0 \qquad (H) \end{align*} $$
We then have a series of equations \( (\tilde E_1), (\tilde E_2), (\tilde E_3) \) to solve:
$$ \left \{ \begin{gather*} y'(x) + 2 y(x) = x^2 \qquad \qquad (\tilde E_1) \\ y'(x) + 2 y(x) = cos(x) \qquad (\tilde E_2) \\ y'(x) + 2 y(x) = 1 \qquad \qquad (\tilde E_3) \\ \end{gather*} \right \} $$
This equation was solved in the example of solving \( LDE_1 \) with constant coefficient.
The specific solution \( y_1 \) of \( (\tilde E_1) \) is:
We have a solution to the homogeneous equation \( (H) \) (see the example of solving \( EDL_1 \) with constant coefficient):
We then look for a particular solution \( y_s \) of type:
After having performed a variation of parameters , we seek to determine the function \( K(x) \) such as:
Now, taking its antiderivative, we do have:
We perform an integration by parts with the following choice for \( u \) and \( v' \):
$$ \Biggl \{ \begin{align*} u(t) = cos(t) \\ v'(t) = e^{2t } \hspace{0.1em} dt \end{align*} $$
$$ \Biggl \{ \begin{align*} u'(t) = -sin(t) dt \\ v(t) = \frac{1}{2} e^{2t } \end{align*} $$
We note that \( K(x) \) reappears, so we replace it:
Injecting \( K \) into \( y_s \), the exponentials annihilate:
The specific solution \( y_2 \) of \( (\tilde E_2) \) is:
Here, \(\frac{1 }{2} \) is an obvious solution.
Thus, the specific solution \( y_3 \) of \( (\tilde E_3) \) is:
We saw in the demonstration above that:
So in our case:
Let us then calculate this particular total solution \(y_s\):
If \( y_s \) is solution for \( (E) \), then:
Let us check it.
By tidying up a little:
We definitely verified that \( y_s \) was a solution for \( (E) \).