French flag Arrows English flag
Sun Arrows Moon
Return Index

Solving quadratic equations

A quadratic equation is under the form:

$$ \forall a \in \hspace{0.05em} \mathbb{R}^*, \enspace \forall (b, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace \forall X \in \mathbb{R}, $$
$$ P_2(X) = aX^2 + bX + c = 0 \qquad (1) $$

Solving by finding roots and factorizing

Solutions for \( X \) which \( P_2(X) = 0 \) are called the roots of the polynomial.

They make it possible to obtain a factorized form.

Three cases should be considered after calculating the discriminant \( \Delta \):

$$ \Delta = b^2 - 4ac \qquad (\Delta) $$


Furhtermore, in the general case we will also have these two relationships between the coefficients and the roots:

$$ X_1 + X_2 =- \frac{b}{a} $$

$$ X_1 X_2 = \frac{c}{a} $$


Demonstration

Solving by finding roots and factorizing

We start from the equation \( (1) \):

$$ aX^2 + bX + c = 0 \qquad (1) $$

First of all, we factorize it by \( a \):

$$ a \left[ X^2 + \frac{b}{a}X + \frac{c}{a} \right] = 0 \qquad (2) $$

However, we notice that the expression in brackets has the same start as \(\left(X + \frac{b}{2a}\right)^2 \), because :

$$ \left(X + \frac{b}{2a}\right)^2 = X^2 + \frac{b}{a}X + \frac{b^2}{4a^2} $$

So that,

$$ \left(X + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} = X^2 + \frac{b}{a}X $$

By rewriting the equation the other way around:

$$ X^2 + \frac{b}{a}X = \left(X + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} \qquad (3) $$

We can then transform \( (2) \) by injecting \( (3) \):

$$ a \left[ \left(X + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \right] = 0 $$
$$ a \left[ \left(X + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right] = 0 $$

We then recognize the third quadratic remarkable identity which is:

$$ A^2 - B^2 = (A + B)(A - B) $$

With:

$$ \begin{Bmatrix} A = X + \frac{b}{2a} \\ B = \sqrt{\frac{b^2 - 4ac}{4a^2}} \end{Bmatrix} $$

Which leads us to:

$$ a \left(X + \frac{b}{2a} + \sqrt{\frac{b^2 - 4ac}{4a^2}} \right) \left(X + \frac{b}{2a} - \sqrt{\frac{b^2 - 4ac}{4a^2}} \right) = 0 $$

For the sake of simplicity, let us set down:

$$ \Delta = b^2 - 4ac $$

We now have:

$$ a \left(X + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \right) \left(X + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} \right) = 0 $$

So:

$$ a \left[ X - \left( -\frac{b}{2a} - \frac{\sqrt{\Delta}}{2a} \right) \right] \left[ X - \left( -\frac{b}{2a} + \frac{\sqrt{\Delta}}{2a} \right) \right] = 0 $$
$$ a \left[ X - \left( \frac{- b - \sqrt{\Delta}}{2a} \right) \right] \left(X - \left(\frac{- b + \sqrt{\Delta}}{2a} \right) \right] = 0 $$

Starting from this result, there will be three cases to take into account.



From the two general formulas for the roots seen above,

$$ X_1 = \frac{- b - \sqrt{\Delta}}{2a} $$
$$ X_2 = \frac{- b + \sqrt{\Delta}}{2a} $$

We can calculate their sum and product.


  1. Sum of roots\(: X_1 + X_2 \)

  2. $$ X_1 + X_2 = \frac{- b - \sqrt{\Delta}}{2a} + \frac{- b + \sqrt{\Delta}}{2a}$$
    $$ X_1 + X_2 = \frac{- 2b}{2a} $$

    $$ X_1 + X_2 = -\frac{b}{a} $$

  3. Roots product\(: X_1 X_2 \)

  4. $$ X_1 X_2 = \biggl( \frac{- b - \sqrt{\Delta}}{2a} \biggr) \biggl( \frac{- b + \sqrt{\Delta}}{2a} \biggr)$$
    $$ X_1 X_2 = \frac{b^2 - b\sqrt{\Delta} + b\sqrt{\Delta}- \Delta }{4a^2} $$
    $$ X_1 X_2 = \frac{b^2 - \Delta }{4a^2} $$

    But, \(\Delta = b^2 - 4ac \), so:

    $$ X_1 X_2 = \frac{b^2 - (b^2 - 4ac)}{4a^2} $$
    $$ X_1 X_2 = \frac{ 4ac}{4a^2} $$

    $$ X_1 X_2 = \frac{c}{a} $$


Examples


  1. Solving a second degree polynomial

  2. $$ P_2(X) = 2X^2 - 3X + 1 $$

    We calculate the discriminant \( \Delta \):

    $$ \Delta = (-3) ^2 - 4 \times 2 \times 1 = 1$$

    So, \(P_2(X) \) has two real roots \(X_1, X_2\):

    $$ X_1 = \frac{- (-3) - \sqrt{1}}{2 \times 2} $$
    $$ X_2 = \frac{- (-3) + \sqrt{1}}{2 \times 2} $$
    $$ X_1 = \frac{2}{4} $$
    $$ X_2 = \frac{4}{4} $$
    $$ \mathcal{S} = \biggl \{X_{1} = \frac{1}{2} , \ X_{2} = 1 \biggr \} $$

    \(P_2(X) \) can be factorized:

    $$ P_2(X) = 2 \left(X- \frac{1}{2} \right)\Bigl(X -1 \Bigr) $$

    \(P_2(X) \) is the polynomial which is worth \(0\) at \( X = \frac{1}{2}\) et \( X = 1\).


  3. Solving a fourth degree polynomial by a variable change

  4. Let us solve this new equation:

    $$ P_4(X) = 6X^4 - X^2 - 1 $$

    When we have this type of situation, we do a variable change:

    Let us set a new variable down:

    $$ \varphi = X^2$$

    Then the polynomial \(P_4(X)\) becomes a second degree polynomial:

    $$ P_4(X) \Longrightarrow P_2( \varphi) = 6\varphi^2 - \varphi - 1 $$

    We can now calculate the discriminant \( \Delta \):

    $$ \Delta = (-1) ^2 - 4 \times (-1) \times 6 = 25$$

    Then \(P_2(\varphi ) \) has two real roots \(\varphi _1, \varphi _2\):

    $$ \varphi _1 = \frac{- (-1) - \sqrt{25}}{2 \times 6} $$
    $$ \varphi _2 = \frac{- (-1) + \sqrt{25}}{2 \times 6} $$
    $$ \varphi _1= -\frac{1}{3} $$
    $$ \varphi _2 = \frac{1}{2 } $$
    $$ \mathcal{S} = \biggl \{\varphi_{1} =-\frac{1}{3} , \ \varphi_{2} = \frac{1}{2 } \biggr \} $$

    And \(P_2(\varphi) \) can be factorized:

    $$ P_2(\varphi) = 6 \left(\varphi + \frac{1}{3} \right)\left(\varphi - \frac{1}{2 } \right) $$

    We finally replace \(\varphi\) by its initial value, \( \varphi = X^2\) :

    $$ P_4(X) = 6 \left(X^2 + \frac{1}{3} \right)\left(X^2 - \frac{1}{2 } \right) $$

    We can further break it down:

    But, we know from the third quadratic remarkable identity that:

    $$ A^2 - B^2 = (A-B)(A+B)$$

    So,

    $$ P_4(X) = 6 \left(X^2 + \frac{1}{3} \right)\left(X + \frac{1}{\sqrt2 } \right)\left(X - \frac{1}{\sqrt2} \right) $$
    $$ P_4(X) = 6 \left(X^2 + \frac{1}{3} \right)\left(X + \frac{\sqrt2}{2 } \right)\left(X - \frac{\sqrt2}{2} \right) $$
Return Index
Scroll top Go to the top of the page