French flag Arrows English flag
Sun Arrows Moon
Return Index

The properties of the vector product

Let \( \vec{u}\) and \( \vec{v}\) be two non-null vectors.


We call vector product (or cross product of two vectors) \( \vec{u} \land \vec{v} \), a new vector extracted from \( \vec{u}\) and \( \vec{v}\) such as:

$$ \Biggl \{ \begin{align*} (\vec{u} \land \vec{v}) \perp \vec{u}, \enspace (\vec{u} \land \vec{v}) \perp \vec{v} \\ || \vec{u} \land \vec{v} || = || \vec{u} || \times ||\vec{v} || \times sin(\vec{u}, \vec{v}) \end{align*} $$

Vector product of u and v

The vector product \( \vec{u} \land \vec{v} \) is orthogonal to both vectors \( \vec{u}\) and \( \vec{v}\).


Cartesian coordinates

$$ \forall \left [\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix} , \vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix} \right] \neq \vec{0} \enspace (with \ \vec{u} \neq k \vec{v}), $$

$$ \vec{u} \land \vec{v} = \begin{pmatrix} y_1.z_2 - y_2.z_1 \\ x_2.z_1 - x_1.z_2 \\ x_1.y_2 - x_2.y_1 \end{pmatrix} $$


Norm

$$ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$ || \vec{u} \land \vec{v} || = || \vec{u}|| \times || \vec{v}|| \times sin(\vec{u}, \vec{v})$$


Lagrange's identity

$$ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$ || \vec{u} \land \vec{v} ||^2 = || \vec{u}||^2 || \vec{v}||^2 - ( \vec{u} . \vec{v})^2 \qquad (Lagrange's \ identity) $$


Collinearity of two vectors

$$ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$ \vec{u} \ and \ \vec{v} \ collinear \Longleftrightarrow \vec{u} \land \vec{v} = \vec{0} $$


Anticommutative law

$$ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$ \vec{u} \land \vec{v} = - \ \vec{v} \land \vec{u} $$


Distributive law in relation to the addition

$$ \forall (\vec{u}, \vec{v}, \vec{w}) \neq \vec{0},$$

$$ \vec{u} \land ( \vec{v} + \vec{w}) = \vec{u} \land \vec{v} + \vec{u} \land \vec{w} $$

And also the distributive law to the left:

$$ \forall (\vec{u}, \vec{v}, \vec{w}) \neq \vec{0},$$

$$(\vec{u} + \vec{v}) \land \vec{w}= \vec{u} \land \vec{w} + \vec{v} \land \vec{w} $$


Freedom of the constant

$$ \forall \lambda \in \hspace{0.05em} \mathbb{R}, \ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$(\lambda\vec{u}) \land \vec{v}= \lambda (\vec{u} \land \vec{v} )= \vec{u} \land (\lambda\vec{v}) $$


Gibbs' formula

$$ \forall (\vec{u}, \vec{v}, \vec{w}) \neq \vec{0},$$

$$ \vec{u} \land (\vec{v} \land \vec{w}) = \bigl(\vec{u}.\vec{w}\bigr) \vec{v} - \bigl(\vec{u}.\vec{v}\bigr) \vec{w} \qquad (Gibbs) $$


Jacobi's identity

$$ \forall (\vec{u}, \vec{v}, \vec{w}) \neq \vec{0},$$

$$ \vec{u} \land (\vec{v} \land \vec{w}) + \vec{v} \land (\vec{w} \land \vec{u}) + \vec{w} \land (\vec{u} \land \vec{v}) = \vec{0} \qquad (Jacobi's \ identity) $$


Recap table of the properties of the vector product

Click on the title to access to the recap table.


Demonstrations

Cartesian coordinates

Let \(\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix}\) and \(\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix}\) be two non-null vectors.

We are looking for a vector \( \vec{w} \begin{pmatrix} x\\ y\\z \end{pmatrix} \) orthogonal to these two vectors, and such as the following figure:

Produit vectoriel de u et v

To obtain a fixed \(\vec{w}\), we do have to add another condition \((H)\), which is that both vectors \(\vec{u}\) and \(\vec{v}\) are non-collinear:

$$ \forall k \in \mathbb{R}, \ \vec{u} \neq k \ \vec{v} \qquad (H)$$

Which also implies that:

$$ \forall k \in \mathbb{R}, \enspace \begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix} \neq \begin{pmatrix} k x_2\\ ky_2\\kz_2 \end{pmatrix}$$

$$ \forall k \in \mathbb{R}, \enspace \Biggl \{ \begin{align*} x_1 \neq k x_2 \\ y_1 \neq k y_2 \\ z_1 \neq k z_2 \end{align*} \ \Longrightarrow \ \frac{x_1}{x_2} \neq \frac{y_1}{y_2} \neq \frac{z_1}{z_2} \qquad (H') $$


The two vectors \( \vec{u}\) and \( \vec{v}\) being respectively orthogonal to the vector \( \vec{w}\), we do have:

$$ \Biggl \{ \begin{align*} \vec{u}.\vec{w} = 0 \\ \vec{v}.\vec{w} = 0\end{align*} $$

So,

$$ \Biggl \{ \begin{align*} x. x_1 + y. y_1 + z. z_1 = 0 \\ x. x_2 + y. y_2 + z. z_2 = 0\end{align*} $$

$$ \Biggl \{ \begin{align*} x. x_1 + y. y_1 = - z. z_1 \\ x. x_2 + y. y_2 = - z. z_2 \end{align*} $$

And then,

$$ (S) \enspace \left \{ \begin{align*} \frac{x}{z}. x_1 + \frac{y}{z}. y_1 = - z_1 \\ \\ \frac{x}{z} . x_2 + \frac{y}{z}. y_2 = - z_2 \end{align*} \right \} $$

Let us solve the system \((S)\).


We divide both equations respectively by \(x_1\) and \(x_2\), in order to isolate \(\frac{x}{z}\).

$$ (S) \Longleftrightarrow \left \{ \begin{align*} \frac{x}{z} + \frac{y}{z}. \frac{y_1}{x_1} = - \frac{z_1}{x_1} \\ \\ \frac{x}{z} + \frac{y}{z}. \frac{y_2}{x_2} = - \frac{z_2}{x_2} \end{align*} \right \} $$

$$ (S) \Longleftrightarrow \left \{ \begin{align*} \frac{x}{z} = - \frac{y}{z}. \frac{y_1}{x_1} - \frac{z_1}{x_1} \\ \\ \frac{x}{z} = - \frac{y}{z}. \frac{y_2}{x_2} - \frac{z_2}{x_2} \end{align*} \right \} $$

We then have a similar value for \(\frac{x}{z}\), hence the equality:

$$ - \frac{y}{z}. \frac{y_1}{x_1} - \frac{z_1}{x_1} = - \frac{y}{z}. \frac{y_2}{x_2} - \frac{z_2}{x_2} $$
$$ - \frac{y}{z}. \frac{y_1}{x_1} + \frac{y}{z}. \frac{y_2}{x_2} = \frac{z_1}{x_1} - \frac{z_2}{x_2} $$
$$ \frac{y}{z} \left(\frac{y_2}{x_2} - \frac{y_1}{x_1} \right) = \frac{z_1}{x_1} - \frac{z_2}{x_2} $$

Finally, by putting the two members under the same denominator, we do obtain:

$$ \frac{y}{z} \left(\frac{y_2.x_1}{x_1.x_2} - \frac{y_1.x_2}{x_1.x_2} \right) = \frac{z_1.x_2}{x_1.x_2} - \frac{z_2.x_1}{x_1.x_2} $$
$$ \frac{y}{z} \left(\frac{y_2.x_1 - y_1.x_2}{x_1.x_2} \right) = \frac{z_1.x_2 - z_2.x_1}{x_1.x_2} $$
$$ \frac{y}{z} = \frac{z_1.x_2 - z_2.x_1}{y_2.x_1 - y_1.x_2} \qquad (1) $$

To satisfy the expression \((1)\), we do have to ensure that:

$$ y_2.x_1 - y_1.x_2 \neq 0 $$
$$ y_2.x_1 \neq y_1.x_2 $$
$$ \frac{x_1}{x_2} \neq \frac{y_1}{y_2} $$

That is the case with the condition \((H')\) :

$$\frac{x_1}{x_2} \neq \frac{y_1}{y_2} \neq \frac{z_1}{z_2} \qquad (H') $$

Let us do the same thing for \(\frac{x}{z}\).

Starting from the initial form of \((S)\), we now divide the two equations respectively by \(y_1\) and \(y_2\).

$$ (S) \enspace \left \{ \begin{align*} \frac{x}{z}. x_1 + \frac{y}{z}. y_1 = - z_1 \\ \\ \frac{x}{z} . x_2 + \frac{y}{z}. y_2 = - z_2 \end{align*} \right \} $$

$$ (S) \Longleftrightarrow \left \{ \begin{align*} \frac{x}{z}.\frac{x_1}{y_1} + \frac{y}{z} = - \frac{z_1}{y_1} \\ \\ \frac{x}{z}.\frac{x_2}{y_2} + \frac{y}{z} = - \frac{z_2}{y_2} \end{align*} \right \} $$

$$ (S) \Longleftrightarrow \left \{ \begin{align*} \frac{y}{z} = - \frac{x}{z}.\frac{x_1}{y_1} - \frac{z_1}{y_1} \\ \\ \frac{y}{z} = - \frac{x}{z}.\frac{x_2}{y_2} - \frac{z_2}{y_2} \end{align*} \right \} $$

Hence the equality:

$$ - \frac{x}{z}.\frac{x_1}{y_1} - \frac{z_1}{y_1} = - \frac{x}{z}.\frac{x_2}{y_2} - \frac{z_2}{y_2} $$
$$ - \frac{x}{z}.\frac{x_1}{y_1}+ \frac{x}{z}.\frac{x_2}{y_2} = \frac{z_1}{y_1} - \frac{z_2}{y_2} $$
$$ \frac{x}{z} \left(\frac{x_2}{y_2} - \frac{x_1}{y_1} \right) = \frac{z_1}{y_1} - \frac{z_2}{y_2} $$
$$ \frac{x}{z} \left(\frac{x_2.y_1}{y_2.y_1} - \frac{x_1.y_2}{y_1.y_2} \right) = \frac{z_1.y_2}{y_1.y_2} - \frac{z_2.y_1}{y_1.y_2} $$
$$ \frac{x}{z} \left(\frac{x_2.y_1 - x_1.y_2}{y_2.y_1} \right) = \frac{z_1.y_2 - z_2.y_1}{y_1.y_2} $$
$$ \frac{x}{z} = \frac{z_1.y_2 - z_2.y_1}{x_2.y_1 - x_1.y_2} \qquad (2) $$

In the same way as previously, the equation \((2)\) is also satisfied thanks to the condition \((H')\).


Now, thanks to both equalities \((1)\) and \((2)\), we extract two new from it:

$$ \frac{y}{x_2.z_1 - x_1.z_2} = \frac{z}{x_1.y_2 - x_2.y_1} \qquad (1') $$
$$ \frac{x}{y_1.z_2 - y_2.z_1} = \frac{z}{x_1.y_2 - x_2.y_1} \qquad (2') $$

These two equalities \((1')\) and \((2')\) having a common term, so all these three ratios are equal:

$$ \frac{x}{y_1.z_2 - y_2.z_1} = \frac{y}{x_2.z_1 - x_1.z_2} = \frac{z}{x_1.y_2 - x_2.y_1} $$

The coordinates \((x, y, z)\) being themselves defined up to a constant, by applying this ratio for \( k = 1 \), we do obtain the coordinates of \( \vec{w} \):

$$ \vec{w} = \begin{pmatrix} y_1.z_2 - y_2.z_1 \\ x_2.z_1 - x_1.z_2 \\ x_1.y_2 - x_2.y_1 \end{pmatrix} $$

And as a result,

$$ \forall \left [\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix} , \vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix} \right] \neq \vec{0} \enspace (with \ \vec{u} \neq k \vec{v}), $$

$$ \vec{u} \land \vec{v} = \begin{pmatrix} y_1.z_2 - y_2.z_1 \\ x_2.z_1 - x_1.z_2 \\ x_1.y_2 - x_2.y_1 \end{pmatrix} $$


Norm

Let \(\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix}\) and \(\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix}\) be two non-null vectors.

We know that the norm of a vector \(\vec{u}\begin{pmatrix} a\\ b\\c \end{pmatrix}\) is worth:

$$ || \vec{u} || = \sqrt{a^2 + b^2 + c^2}$$

So, using the cartesian coordinates seen above, we do have:

$$ || \vec{u} \land \vec{v} || = \sqrt{ \Bigl( y_1.z_2 - y_2.z_1\Bigr)^2 + \Bigl(x_2.z_1 - x_1.z_2\Bigr)^2 + \Bigl(x_1.y_2 - x_2.y_1\Bigr)^2} $$

So, by developing it:

$$ || \vec{u} \land \vec{v} || = \sqrt{ \begin{align*} \Bigl(y_1^2.z_2^2 - 2 y_1.z_2.y_2.z_1 + y_2^2.z_1^2 \Bigr) + \Bigl(x_2^2.z_1^2 - 2 x_2.z_1.x_1.z_2 + x_1^2.z_2^2 \Bigr) + \Bigl(x_1^2.y_2^2 - 2 x_1.y_2.x_2.y_1 + x_2^2.y_1^2 \Bigr) \end{align*} } $$

$$ || \vec{u} \land \vec{v} || = \sqrt{ \Bigl(x_1.y_2 \Bigr)^2 + \Bigl(x_1.z_2 \Bigr)^2 + \Bigl(y_1.x_2 \Bigr)^2 + \Bigl(y_1.z_2 \Bigr)^2 + \Bigl(z_1.x_2 \Bigr)^2 + \Bigl(z_1.y_2 \Bigr)^2 - 2 y_1.z_2.y_2.z_1 - 2 x_2.z_1.x_1.z_2 - 2 x_1.y_2.x_2.y_1 } $$

We notice that the left part of the square root almost corresponds to the product \( \Bigl(x_1^2 + y_1^2 + z_1^2 \Bigr) \Bigl(x_2^2 + y_2^2 + z_2^2 \Bigr)\). Effectively:

$$ \Bigl(x_1.y_2 \Bigr)^2 + \Bigl(x_1.z_2 \Bigr)^2 + \Bigl(y_1.x_2 \Bigr)^2 + \Bigl(y_1.z_2 \Bigr)^2 + \Bigl(z_1.x_2 \Bigr)^2 + \Bigl(z_1.y_2 \Bigr)^2 = \Bigl(x_1^2 + y_1^2 + z_1^2 \Bigr) \Bigl(x_2^2 + y_2^2 + z_2^2 \Bigr) - \Bigl(x_1.x_2 \Bigr)^2 - \Bigl(y_1.y_2 \Bigr)^2 - \Bigl(z_1.z_2 \Bigr)^2 $$


We then have:

$$ || \vec{u} \land \vec{v} || = \sqrt{ \Bigl(x_1^2 + y_1^2 + z_1^2 \Bigr) \Bigl(x_2^2 + y_2^2 + z_2^2 \Bigr) - \Bigl(x_1.x_2 \Bigr)^2 - \Bigl(y_1.y_2 \Bigr)^2 - \Bigl(z_1.z_2 \Bigr)^2 - 2 y_1.z_2.y_2.z_1 - 2 x_2.z_1.x_1.z_2 - 2 x_1.y_2.x_2.y_1 } $$

$$ || \vec{u} \land \vec{v} || = \sqrt{ \Bigl(x_1^2 + y_1^2 + z_1^2 \Bigr) \Bigl(x_2^2 + y_2^2 + z_2^2 \Bigr) - \biggl[ \Bigl(x_1.x_2 \Bigr)^2 + \Bigl(y_1.y_2 \Bigr)^2 + \Bigl(z_1.z_2 \Bigr)^2 + 2 \left(x_1.x_2 \right) \left(y_1.y_2 \right) + 2 \left(y_1.y_2 \right) \left(z_1.z_2 \right) + 2 \left(x_1.x_2 \right)\left(z_1.z_2 \right) \biggr] } $$

Likewise, by restoring a little order, we see another remarkable identity:

A remarkable identity of the second degree with three terms is worth:

$$ \forall (a, b, c) \in \hspace{0.05em} \mathbb{R}^3, $$
$$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac $$

So in our case:

$$ || \vec{u} \land \vec{v} || = \sqrt{ \Bigl(x_1^2 + y_1^2 + z_1^2 \Bigr) \Bigl(x_2^2 + y_2^2 + z_2^2 \Bigr) - \biggl[ x_1.x_2 + y_1.y_2 + z_1.z_2 \biggr]^2 } $$

We recognize certain formulas of the scalar product.

$$ || \vec{u} \land \vec{v} || = \sqrt{ || \vec{u}||^2 \times || \vec{v}||^2 - \biggl[ \vec{u}.\vec{v} \biggr]^2 } \qquad (3) $$

$$ || \vec{u} \land \vec{v} || = \sqrt{ || \vec{u}||^2 \times || \vec{v}||^2 - \biggl[ || \vec{u}|| \times || \vec{v}|| \times cos(\vec{u}, \vec{v})\biggr]^2 } $$

$$ || \vec{u} \land \vec{v} || = \sqrt{ \biggl( || \vec{u}|| \times || \vec{v}|| \biggr)^2 \biggl( 1 - cos^2(\vec{u}, \vec{v})\biggr) } $$


And as a result,

$$ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$ || \vec{u} \land \vec{v} || = || \vec{u}|| \times || \vec{v}|| \times sin(\vec{u}, \vec{v})$$


Lagrange's identity

In the previous section, we found out the equation \((3)\):

$$ || \vec{u} \land \vec{v} || = \sqrt{ || \vec{u}||^2 \times || \vec{v}||^2 - \biggl[ \vec{u}.\vec{v} \biggr]^2 } \qquad (3) $$

By applying the square on both sides of this equation, we do obtain the Lagrange's identity:

$$ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$ || \vec{u} \land \vec{v} ||^2 = || \vec{u}||^2 || \vec{v}||^2 - ( \vec{u} . \vec{v})^2 \qquad (Lagrange's \ identity) $$


Collinearity of two vectors

Let \(\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix}\) and \(\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix}\) be two non-null vectors.


  1. From left to right implication

  2. Let us start from the hypothesis that \(\vec{u} \) and \(\vec{v} \) are collinear.

    So, we have the relationship:

    $$ \exists k \in \mathbb{R}, \ \vec{u} = k. \vec{v} $$

    And the vector \(\vec{u}\) can be written in terms of \(\vec{v}\):

    $$ \vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix} = k .\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix} = \vec{u}\begin{pmatrix} k . x_2 \\ k . y_2 \\ k . z_2 \end{pmatrix}$$

    By determining the coordinates of \( \vec{u} \land \vec{v} \), we do have:

    $$ \vec{u} \land \vec{v} = \begin{pmatrix} k . x_2 \\ k . y_2 \\ k . z_2 \end{pmatrix} \land \begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix} = \begin{pmatrix} k.y_2.z_2 - y_2.k.z_2 \\ x_2.k.z_2 - k.x_2.z_2 \\ k.x_2.y_2 - x_2.k.y_2 \end{pmatrix} $$
    $$ \vec{u} \land \vec{v} = \vec{0} $$

  3. Reciprocal

  4. Let us now start from the hypothesis that \(\vec{u} \land \vec{v} = \vec{0}\).

    So, its norm is worth zero.

    $$ || \vec{u} \land \vec{v} || = || \vec{u}|| \times || \vec{v}|| \times sin(\vec{u}, \vec{v}) = 0$$

    And as by hypothesis our two vectors are not zero, then we necessarily have:

    $$ || \vec{u} \land \vec{v} || = 0 \ \Longrightarrow \ sin(\vec{u}, \vec{v}) = 0$$

    And,

    $$ \forall k \in \mathbb{N}, \ sin(\vec{u}, \vec{v}) = 0 \ \Longrightarrow \ \Biggl\{ (\vec{u}, \vec{v}) = k\pi \Biggr\} $$

    Then the two vectors are collinear.


  5. Conclusion

  6. $$ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

    $$ \vec{u} \ and \ \vec{v} \ collinear \Longleftrightarrow \vec{u} \land \vec{v} = \vec{0} $$

    In a general way, it makes no sense to look for a unique vector orthogonal to two collinear vectors, because there exist an infinite of it.


Anticommutative law

Let \(\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix}\) and \(\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix}\) be two non-null vectors.


Let us calculate the coordinates of \( \vec{u} \land \vec{v} \) and \( \vec{v} \land \vec{u} \).

$$ \vec{u} \land \vec{v} \begin{pmatrix} y_1.z_2 - y_2.z_1 \\ x_2.z_1 - x_1.z_2 \\ x_1.y_2 - x_2.y_1 \end{pmatrix} $$
$$ \vec{v} \land \vec{u} \begin{pmatrix} y_2.z_1 - y_1.z_2 \\ x_1.z_2 - x_2.z_1 \\ x_2.y_1 - x_1.y_2\end{pmatrix} = \vec{v} \land \vec{u} \begin{pmatrix} -( y_1.z_2 - y_2.z_1) \\ -(x_2.z_1 - x_1.z_2) \\ -(x_1.y_2 - x_2.y_1) \end{pmatrix} $$
$$ \vec{v} \land \vec{u} \begin{pmatrix} y_2.z_1 - y_1.z_2 \\ x_1.z_2 - x_2.z_1 \\ x_2.y_1 - x_1.y_2\end{pmatrix} = - \ \vec{u} \land \vec{v} \begin{pmatrix} y_1.z_2 - y_2.z_1 \\ x_2.z_1 - x_1.z_2 \\ x_1.y_2 - x_2.y_1 \end{pmatrix} $$

And as a result,

$$ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$ \vec{u} \land \vec{v} = - \ \vec{v} \land \vec{u} $$


Distributive law in relation to the addition

Let \(\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix}\), \(\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix}\) and \(\vec{w}\begin{pmatrix} x_3\\ y_3\\z_3 \end{pmatrix}\) be three non-null vectors.


  1. Distributive law to the right
  2. Let us calculate the coordinates of \( \vec{u} \land ( \vec{v} + \vec{w}) \).

    $$\vec{u} \land ( \vec{v} + \vec{w}) = \begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix} \land \begin{pmatrix} x_2 + x_3\\ y_2 + y_3 \\ z_2 + z_3 \end{pmatrix} $$
    $$\vec{u} \land ( \vec{v} + \vec{w}) = \begin{pmatrix} y_1.\bigl[z_2 + z_3\bigr] - \bigl[y_2 + y_3 \bigr].z_1 \\ \bigl[x_2 + x_3\bigr].z_1 - x_1.\bigl[ z_2 + z_3 \bigr] \\ x_1.\bigl[y_2 + y_3 \bigr] -\bigl[x_2 + x_3 \bigr].y_1 \end{pmatrix} $$
    $$\vec{u} \land ( \vec{v} + \vec{w}) = \begin{pmatrix} y_1.z_2 + y_1.z_3 - y_2.z_1 - y_3.z_1 \\ x_2.z_1 + x_3.z_1 - x_1.z_2 - x_1.z_3 \\ x_1.y_2 + x_1.y_3 - x_2.y_1 - x_3.y_1\end{pmatrix} $$

    But, the vector products \( \vec{u} \land \vec{v} \) and \( \vec{u} \land \vec{w} \) are respectively worth:

    $$ \vec{u} \land \vec{v} = \begin{pmatrix} y_1.z_2 - y_2.z_1 \\ x_2.z_1 - x_1.z_2 \\ x_1.y_2 - x_2.y_1 \end{pmatrix} $$
    $$ \vec{u} \land \vec{w} = \begin{pmatrix} y_1.z_3 - y_3.z_1 \\ x_3.z_1 - x_1.z_3 \\ x_1.y_3 - x_3.y_1 \end{pmatrix} $$

    And as a result,

    $$ \forall (\vec{u}, \vec{v}, \vec{w}) \neq \vec{0},$$

    $$ \vec{u} \land ( \vec{v} + \vec{w}) = \vec{u} \land \vec{v} + \vec{u} \land \vec{w} $$


  3. Distributive law to the left
  4. Thanks to the anticommutative law, we do have:

    $$ (\vec{u} + \vec{v}) \land \vec{w}= - \ w \land ( \vec{u} + \vec{v}) $$

    Now, distributing it to the right:

    $$ (\vec{u} + \vec{v}) \land \vec{w}= - \vec{w} \land \vec{u} - \vec{w} \land \vec{v} $$

    In the end, applying again the anticommutative law:

    $$ (\vec{u} + \vec{v}) \land \vec{w}= \vec{u} \land \vec{w} + \vec{v} \land \vec{w} $$

    And as a result,

    $$ \forall (\vec{u}, \vec{v}, \vec{w}) \neq \vec{0},$$

    $$(\vec{u} + \vec{v}) \land \vec{w}= \vec{u} \land \vec{w} + \vec{v} \land \vec{w} $$


Freedom of the constant

Let \(\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix}\) and \(\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix}\) be two non-null vectors.

When we perform \( \lambda (\vec{u} \land \vec{v} ) \), we notice that:

$$ \lambda (\vec{u} \land \vec{v} ) = \lambda \left[ \begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix} \land \begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix} \right]$$
$$ \lambda (\vec{u} \land \vec{v} ) = \lambda \begin{pmatrix} y_1.z_2 - y_2.z_1 \\ x_2.z_1 - x_1.z_2 \\ x_1.y_2 - x_2.y_1 \end{pmatrix} $$
$$ \lambda (\vec{u} \land \vec{w} ) = \begin{pmatrix} \lambda \bigl(y_1.z_2 - y_2.z_1 \bigr) \\ \lambda \bigl(x_2.z_1 - x_1.z_2 \bigr) \\ \lambda \bigl(x_1.y_2 - x_2.y_1 \bigr) \end{pmatrix} $$
$$ \lambda (\vec{u} \land \vec{w} ) = \begin{pmatrix} \lambda . y_1.z_2 - \lambda .y_2.z_1 \\ \lambda . x_2.z_1 - \lambda .x_1.z_2 \\ \lambda .x_1.y_2 - \lambda . x_2.y_1 \end{pmatrix} $$

But,

$$ (\lambda\vec{u}) \land \vec{v} = \begin{pmatrix} \lambda x_1\\ \lambda y_1\\ \lambda z_1 \end{pmatrix} \land \begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix} $$
$$ (\lambda\vec{u}) \land \vec{v} = \begin{pmatrix} \lambda . y_1.z_2 - \lambda .y_2.z_1 \\ \lambda . x_2.z_1 - \lambda .x_1.z_2 \\ \lambda .x_1.y_2 - \lambda . x_2.y_1 \end{pmatrix} $$

And in the same way on the right,

$$ \vec{u} \land (\lambda\vec{v}) = \begin{pmatrix} x_1\\ y_1\\ z_1 \end{pmatrix} \land \begin{pmatrix}\lambda x_2\\ \lambda y_2\\ \lambda z_2 \end{pmatrix} $$
$$ \vec{u} \land (\lambda\vec{v}) = \begin{pmatrix} \lambda . y_1.z_2 - \lambda .y_2.z_1 \\ \lambda . x_2.z_1 - \lambda .x_1.z_2 \\ \lambda .x_1.y_2 - \lambda . x_2.y_1 \end{pmatrix} $$

All three expressions are equal.


And as a result,

$$ \forall \lambda \in \hspace{0.05em} \mathbb{R}, \ \forall (\vec{u}, \vec{v}) \neq \vec{0},$$

$$(\lambda\vec{u}) \land \vec{v}= \lambda (\vec{u} \land \vec{v} )= \vec{u} \land (\lambda\vec{v}) $$


Gibbs' formula

Let \(\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix}\), \(\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix}\) and \(\vec{w}\begin{pmatrix} x_3\\ y_3\\z_3 \end{pmatrix}\) be three non-null vectors.

Let us calculate a vector product of vector product: \( \vec{u} \land (\vec{v} \land \vec{w})\).

$$ \vec{u} \land (\vec{v} \land \vec{w}) = \begin{pmatrix}x_1\\ y_1 \\ z_1 \end{pmatrix} \land \begin{pmatrix}y_2.z_3 - y_3.z_2 \\ x_3.z_2 - x_2.z_3 \\ x_2.y_3 - x_3.y_2 \end{pmatrix}$$
$$ \vec{u} \land (\vec{v} \land \vec{w}) = \begin{pmatrix}x_1\\ y_1 \\ z_1 \end{pmatrix} \land \begin{pmatrix}y_2.z_3 - y_3.z_2 \\ x_3.z_2 - x_2.z_3 \\ x_2.y_3 - x_3.y_2 \end{pmatrix}$$
$$ \vec{u} \land (\vec{v} \land \vec{w}) = \begin{pmatrix}y_1\bigl(x_2.y_3 - x_3.y_2\bigr) - \bigl(x_3.z_2 - x_2.z_3\bigr).z_1 \\ \bigl(y_2.z_3 - y_3.z_2\bigr).z_1 - x_1. \bigl(x_2.y_3 - x_3.y_2\bigr) \\ x_1.\bigl(x_3.z_2 - x_2.z_3\bigr) - \bigl(y_2.z_3 - y_3.z_2\bigr).y_1 \end{pmatrix}$$
$$ \vec{u} \land (\vec{v} \land \vec{w}) = \begin{pmatrix} x_2.y_1.y_3 - x_3.y_1.y_2 - x_3.z_1.z_2 + x_2.z_1.z_3 \\ y_2.z_1.z_3 - y_3.z_1.z_2 - x_1.x_2.y_3 + x_1.x_3.y_2 \\ x_1.x_3.z_2 - x_1.x_2.z_3 - y_1.y_2.z_3 + y_1.y_3.z_2 \end{pmatrix}$$

By factorizing, we notice that up to a term appear some scalar product:

$$ \vec{u} \land (\vec{v} \land \vec{w}) = \begin{pmatrix} x_2.\bigl(y_1.y_3 + z_1.z_3\bigr) - x_3.\bigl(y_1.y_2 + z_1.z_2\bigr) \\ y_2.\bigl(x_1.x_3 + z_1.z_3\bigr) - y_3.\bigl(x_1.x_2 + z_1.z_2\bigr) \\ z_2.\bigl(x_1.x_3 + y_1.y_3\bigr) - z_3.\bigl(x_1.x_2 + y_1.y_2\bigr) \end{pmatrix}$$
$$ \vec{u} \land (\vec{v} \land \vec{w}) = \begin{pmatrix} x_2.\Bigl(\vec{u}.\vec{w} - x_1.x_3 \Bigr) - x_3.\Bigl(\vec{u}.\vec{v} - x_1.x_2 \Bigr) \\ y_2.\Bigl(\vec{u}.\vec{w} - y_1.y_3 \Bigr) - y_3.\Bigl(\vec{u}.\vec{v} - y_1.y_2 \Bigr) \\ z_2.\Bigl(\vec{u}.\vec{w} - z_1.z_3 \Bigr) - z_3.\Bigl(\vec{u}.\vec{w} - z_1.z_2 \Bigr) \end{pmatrix}$$
$$ \vec{u} \land (\vec{v} \land \vec{w}) = \begin{pmatrix} x_2.\bigl(\vec{u}.\vec{w}\bigr) - x_1.x_2. x_3 - x_3.\bigl(\vec{u}.\vec{v} \bigr) + x_1.x_2. x_3 \\ y_2.\bigl(\vec{u}.\vec{w}\bigr) - y_1.y_2. y_3 - y_3.\bigl(\vec{u}.\vec{v} \bigr) + y_1.y_2. y_3 \\ z_2.\bigl(\vec{u}.\vec{w}\bigr) - z_1.z_2. z_3 - z_3.\bigl(\vec{u}.\vec{v} \bigr) + z_1.z_2. z_3 \end{pmatrix}$$
$$ \vec{u} \land (\vec{v} \land \vec{w}) = \begin{pmatrix} x_2.\bigl(\vec{u}.\vec{w}\bigr) - x_3.\bigl(\vec{u}.\vec{v} \bigr) \\ y_2.\bigl(\vec{u}.\vec{w}\bigr) - y_3.\bigl(\vec{u}.\vec{v} \bigr) \\ z_2.\bigl(\vec{u}.\vec{w}\bigr) - z_3.\bigl(\vec{u}.\vec{v} \bigr) \end{pmatrix}$$
$$ \vec{u} \land (\vec{v} \land \vec{w}) = \bigl(\vec{u}.\vec{w}\bigr) \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} - \bigl(\vec{u}.\vec{v}\bigr) \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix}$$

And as a result,

$$ \forall (\vec{u}, \vec{v}, \vec{w}) \neq \vec{0},$$

$$ \vec{u} \land (\vec{v} \land \vec{w}) = \bigl(\vec{u}.\vec{w}\bigr) \vec{v} - \bigl(\vec{u}.\vec{v}\bigr) \vec{w} \qquad (Gibbs) $$


Jacobi's identity

Let \(\vec{u}\begin{pmatrix} x_1\\ y_1\\z_1 \end{pmatrix}\), \(\vec{v}\begin{pmatrix} x_2\\ y_2\\z_2 \end{pmatrix}\) and \(\vec{w}\begin{pmatrix} x_3\\ y_3\\z_3 \end{pmatrix}\) be three non-null vectors.

If we want to calculate three vector products of vector product, shifting each vector to the right, we do have:

$$ \vec{u} \land (\vec{v} \land \vec{w}) + \vec{v} \land (\vec{w} \land \vec{u}) + \vec{w} \land (\vec{u} \land \vec{v})$$

Thanks to the Gibbs' formula previously calculated, we will be able to easily simplify this expression.

$$ \vec{u} \land (\vec{v} \land \vec{w}) + \vec{v} \land (\vec{w} \land \vec{u}) + \vec{w} \land (\vec{u} \land \vec{v}) = \bigl(\vec{u}.\vec{w}\bigr) \vec{v} - \bigl(\vec{u}.\vec{v}\bigr) \vec{w} + \bigl(\vec{v}.\vec{u}\bigr) \vec{w} - \bigl(\vec{u}.\vec{w}\bigr)\vec{u} + \bigl(\vec{w}.\vec{v}\bigr) \vec{u} - \bigl(\vec{w}.\vec{u}\bigr)\vec{v}$$
$$ \vec{u} \land (\vec{v} \land \vec{w}) + \vec{v} \land (\vec{w} \land \vec{u}) + \vec{w} \land (\vec{u} \land \vec{v}) = \ \underbrace{ \bigl(\vec{u}.\vec{w}\bigr) \vec{v} - \bigl(\vec{w}.\vec{u}\bigr)\vec{v} } _\text{ \( = \ \vec{0}\)} \ + \ \underbrace{ \bigl(\vec{v}.\vec{u}\bigr) \vec{w} - \bigl(\vec{u}.\vec{v}\bigr) \vec{w} } _\text{ \( = \ \vec{0} \)} \ + \ \ \underbrace{ \bigl(\vec{w}.\vec{v}\bigr) \vec{u} - \bigl(\vec{u}.\vec{w}\bigr)\vec{u} } _\text{ \( = \ \vec{0} \)} $$

And as a result,

$$ \forall (\vec{u}, \vec{v}, \vec{w}) \neq \vec{0},$$

$$ \vec{u} \land (\vec{v} \land \vec{w}) + \vec{v} \land (\vec{w} \land \vec{u}) + \vec{w} \land (\vec{u} \land \vec{v}) = \vec{0} \qquad (Jacobi's \ identity) $$


Recap table of the properties of the vector product


Examples

  1. Determining the equation of a plane in space

  2. Let \((ABCDEFGH)\) be a cube in an orthonormal coordinate system in space \((A, \ \overrightarrow{AB}, \ \overrightarrow{AD}, \ \overrightarrow{AE})\).

    Un cube dans une base orthonormée

    We want to determine the equation of the plane \((BGE)\).

    To do this, we need to first determine the vector \( \vec{n}\) orthogonal to this plane, by performing the vector product of to vectors of this plane.

    Détermination de l'équation d'un plan avec le produit vectoriel

    By making the arbitrary choice of the two vectors \(\vec{u} = \ \overrightarrow{BE}\) et \(\vec{v} = \ \overrightarrow{BG}\),we do have:

    $$ \vec{u} \land \vec{v} = \ \overrightarrow{BE} \land \ \overrightarrow{BG} $$
    $$ \vec{u} \land \vec{v} = \ \begin{pmatrix} x_E - x_ B \\ y_E - y_ B \\ z_E - z_ B\end{pmatrix} \land \begin{pmatrix} x_G - x_ B \\ y_G - y_ B \\ z_G - z_ B\end{pmatrix} $$
    $$ \vec{u} \land \vec{v} = \begin{pmatrix} -1 \\ \ \ \ 0 \\ \ \ \ 1 \end{pmatrix} \land \begin{pmatrix} 0 \\ 1\\ 1\end{pmatrix} $$
    $$ \vec{u} \land \vec{v} = \begin{pmatrix} 0 \times 1 - 1 \times 1 \\ 0 \times 1 - (-1) \times 1 \\ (-1) \times 1 - 0 \times 0 \end{pmatrix} $$
    $$ \vec{u} \land \vec{v} = \begin{pmatrix} -1 \\ \ \ \ 1 \\ -1 \end{pmatrix} $$

    The plane \((BGE)\) has for normal vector \( \vec{n} \begin{pmatrix} -1 \\ \ \ \ 1\\ -1 \end{pmatrix} \), and then have as equation:

    $$ -x + y -z + d = 0 \qquad (BGE) $$

    Let us finally determine the parameter \(d\) by injecting the coordinates of a point of this plane in its equation; point \(B\) for example.

    $$ x_B + y_B -z_B + d = 0 $$
    $$ -1 + 0 -0 + d = 0 \ \Longrightarrow \ d = 1$$

    And as a result the equation of the plane \((BGE)\) is worth:

    $$ -x + y -z +1 = 0 \qquad (BGE) $$
Return Index
Scroll top Go to the top of the page