French flag Arrows English flag
Sun Arrows Moon
Return Index

The properties of the powers of x

Let \( n\in \mathbb{N}\) be natural number and \( x \in \mathbb{R}\) a real number.

We call \(x^n\) a number \(x\) multiplied \(n\) times by itself:

$$ x^n = \hspace{0.2em} \underbrace {x \times x \times x \times x \times x ...} _\text{ \(n\) factors } $$


In a general way, we define:

$$\forall (x, n) \in \mathcal{D}(x^n), \ f(x) = x^n $$

$$ with \enspace \mathcal{D}(x^n) = \Biggl[(x = 0) \land (n \in \mathbb{R}) \Biggr] \lor \underbrace{ \overbrace { \Biggl[ \forall x \in \hspace{0.05em} \mathbb{R}^*, \enspace \forall n \in \frac{\mathbb{Z}}{2\mathbb{N} + 1 } \Biggr] } ^\text{even and odd functions} \lor \overbrace { \Biggl[ \forall x \in \hspace{0.05em} \mathbb{R}^*_+, \enspace \forall n \in \frac{\mathbb{Z}}{2\mathbb{N}^*} \Biggr] } ^\text{ square root } } _\text{\(n \ \in \ \mathbb{Q}\) under an irreducible form} \lor \underbrace{ \Biggl[ \forall x \in \hspace{0.05em} \mathbb{R}^*_+, \enspace \forall n \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \mathbb{Q} \Bigr] \Biggr] } _\text{irrational numbers}$$

In all demonstrations, the case where \((x=0)\) had been set aside:


Since the natural logarithm does not accept negative values, we will use a sign generator to compensate. Therefore, we will set down:

$$ \forall x^n \in \hspace{0.05em} \mathcal{D}(x^n), $$

$$ x^n = \left( \frac{x}{|x|}\right)^{n} \ e^{ln|x^{n}|} \qquad (1) $$


Power of a product/quotient

$$ \forall (x^a,y^a) \in \hspace{0.05em} \mathcal{D}(x^n)^2, $$

$$ x^a y ^a = (xy)^a $$

$$ \forall (x^a,y^a) \in \hspace{0.05em} \mathcal{D}(x^n)^2, \ y \neq 0, $$

$$ \frac{x^a}{y^a} = \left( \frac{x}{y} \right)^a $$


Product/quotient of powers

$$ \forall (x^a, x^b) \in \mathcal{D}(x^n)^2, $$

$$ x^a x^b = x^{a+b} $$

$$ \forall (x^a, x^b) \in \mathcal{D}(x^n)^2, \ x \neq 0, $$

$$ \frac{x^a}{x^b} = x^{a-b} $$


Power of a power

$$ \forall x^a \in \mathcal{D}(x^n), \ \forall b \in \mathbb{R}, $$

$$ (x^a)^b = (x^b)^a = x^{ab} $$


A number raised to the power of zero

$$ \forall x \in \hspace{0.05em} \mathbb{R}^*, $$

$$ x^0 = 1 $$


Inverse of a power

$$ \forall x^a \in \mathcal{D}(x^n), $$

$$\frac{1}{x^a} = x^{-a}$$


nth root root of a number

$$ \forall x \in \hspace{0.05em} \mathbb{R}^+, $$

$$ x^{\frac{1}{2}}= \sqrt{x} $$

$$ \forall a \in \hspace{0.05em} \mathbb{Z}^*, \ \Bigl[ \forall x \in \hspace{0.05em} \mathbb{R}_+, \ n \in \{2a\} \Bigr] \lor \Bigl[ \forall x \in \hspace{0.05em} \mathbb{R}, \ n \in \{2a + 1\} \Bigr], $$

$$ x^{\frac{1}{n}}= \sqrt[n]{x} $$


Recap table of the formulas of the powers of x

Click on the title above to access the recap table.


Demonstrations


Power of a product/quotient

  1. Product

    1. For exponents in the natural numbers set\(: a \in \mathbb{N} \)
    2. Let \( (x, y) \in \hspace{0.05em} \bigl[ \mathbb{R}^* \bigr]^2 \) two non-zero real numbers and \( a\in \hspace{0.05em} \mathbb{N} \) a natural number.

      $$ (xy)^a = \hspace{0.2em} \underbrace {xy \times xy \times xy \times xy \times xy ...} _\text{ \(a\) factors } $$

      The product of two number being commutative:

      $$ (xy)^a = \hspace{0.2em} \underbrace {x \times x \times x\times x \times x...} _\text{ \(a\) factors } \ \times \ \underbrace {y \times y \times y \times y \times y ...} _\text{ \(a\) factors } $$


      Now, considering the fundamental definition of a power of \(x\):

      $$ x^n = \hspace{0.2em} \underbrace {x \times x \times x \times x \times x ...} _\text{ \(n\) factors } $$

      We then have,

      $$ (xy)^a = x^a \times y^a $$


      And as result,

      $$ \forall (x,y) \in \hspace{0.05em} \bigl[ \mathbb{R}^* \bigr]^2, \ \forall a \in \mathbb{N}, $$

      $$ x^a y ^a = (xy)^a $$


    3. For exponents in the integers set\(: a \in \mathbb{Z} \)
    4. The division of a number \(a\) by a number \(b\) being just the multiplication of \(a\) by the inverse of \(b\), the previous formulas also work well for exponents in \( \mathbb{Z}\).


    5. For exponents in the real numbers set\(: a \in \mathbb{R} \)
    6. Let us get the expression \((1)\) back:

      $$ \forall x^n \in \hspace{0.05em} \mathcal{D}(x^n), $$

      $$ x^n = \left( \frac{x}{|x|}\right)^{n} \ e^{ln|x^{n}|} \qquad (1) $$


      Let \( (x, y) \in \hspace{0.05em} \bigl[ \mathbb{R}^* \bigr]^2 \) two non-zero real numbers and \( a\in \hspace{0.05em} \mathbb{R} \) areal number. So,

      $$ \forall (x^a, y^a) \in \hspace{0.05em} \mathcal{D}(x^n)^2, $$

      $$ x^a y^a = \left( \frac{x}{|x|}\right)^{a} e^{ln|x^{a}|} \ \left( \frac{y}{|y|}\right)^{a} e^{ln|y^{a}|} $$

      $$ x^a y^a = \left( \frac{x}{|x|}\right)^{a} \left( \frac{y}{|y|}\right)^{a} \ e^{ln|x^{a}|} \ e^{ln|y^{a}|} $$

      Thanks to the definition of the definition set \(\mathcal{D}(x^n)\), we are sure that the sign generators are well defined. Since they can take as value either \(1\), or \(-1\), let us make a table to consider all these cases, a bit like a truth table:

      $$\frac{x}{|x|}$$

      $$\frac{y}{|y|}$$

      $$\left(\frac{x}{|x|}\right)^{a}$$

      $$\left(\frac{y}{|y|}\right)^{a}$$

      $$ \left(\frac{x}{|x|}\right)^{a} \left(\frac{y}{|y|}\right)^{a}$$

      $$ \frac{x}{|x|} \frac{y}{|y|}$$

      $$ \left(\frac{x}{|x|} \frac{y}{|y|}\right)^{a}$$

      $$-1$$

      $$-1$$

      $$(-1)^a$$

      $$(-1)^a$$

      $$((-1)^a)^2 = 1$$

      $$1$$

      $$1$$

      $$-1$$

      $$1$$

      $$(-1)^a$$

      $$1$$

      $$(-1)^a$$

      $$-1$$

      $$(-1)^a$$

      $$1$$

      $$-1$$

      $$1$$

      $$(-1)^a$$

      $$(-1)^a$$

      $$-1$$

      $$(-1)^a$$

      $$1$$

      $$1$$

      $$1$$

      $$1$$

      $$1$$

      $$1$$

      $$1$$

      This table shows that:

      $$\forall x^n \in \mathcal{D}(x^n), \ \left(\frac{x}{|x|}\right)^{a} \left(\frac{y}{|y|}\right)^{a} = \left( \frac{x}{|x|} \frac{y}{|y|} \right)^{a} $$

      So,

      $$ x^a y^a = \left( \frac{x}{|x|} \frac{y}{|y|} \right)^{a} \ e^{ln|x^{a}|} \ e^{ln|y^{a}|} $$

      The product of absolute values being the absolute value of the product, we do have this:

      $$ x^a y^a = \left( \frac{xy}{|xy|} \right)^{a} \ e^{ln|x^{a}|} \ e^{ln|y^{a}|} $$

      Now, using the formulas of logarithm and exponential functions:

      $$ x^a y^a = \left( \frac{xy}{|xy|} \right)^{a} \ e^{a \ ln|x| + a \ ln|y|} $$

      $$ x^a y^a = \left( \frac{xy}{|xy|} \right)^{a} \ e^{a \ ln|xy| } $$

      $$ x^a y^a = \left( \frac{xy}{|xy|} \right)^{a} \ \ e^{ln|xy|^a} $$

      We definitely find again the same form as the expression \((1)\). So:


      $$ \forall (x^a,y^a) \in \hspace{0.05em} \mathcal{D}(x^n)^2, $$

      $$ x^a y^a = (xy)^a $$


    7. Conclusion
    8. We showed that the formula works in the natural numbers set \( (\mathbb{N}) \), in the integers set \( (\mathbb{Z}) \), but also in the real numbers set \( (\mathbb{R}) \).


      Therefore in any case,

      $$\forall (x^a,y^a) \in \hspace{0.05em} \mathcal{D}(x^n)^2, $$

      $$ x^a y^a = (xy)^a $$

  2. Quotient

  3. The division of a number \(a\) by a number \(b\) being just the multiplication of \(a\) by the inverse of \(b\), the previous formulas also work well with quotients.

    $$\forall (x^a,y^a) \in \hspace{0.05em} \mathcal{D}(x^n)^2, \ y \neq 0, $$

    $$ \frac{x^a}{y^a} = \left(\frac{x}{y}\right)^a $$

Product/quotient of powers

  1. Product

    1. For exponents in the natural numbers set\(: (a,b) \in \hspace{0.05em} \mathbb{N}^2 \)
    2. Let \( x\in \hspace{0.05em} \mathbb{R}^* \) a non-zero real number and \( (a, b) \in \hspace{0.05em} \mathbb{N}^2 \) two natural numbers.

      Performing the product \(x^a x^b \), we do have:

      $$ x^a x^b = \hspace{0.2em} \underbrace {x \times x \times x \times x \times x ...} _\text{ \(a\) factors } \ \times \ \hspace{0.2em} \underbrace {x \times x \times x \times x \times x ...} _\text{ \(b\) factors }$$

      $$ x^a x^b = \hspace{0.2em} \underbrace {x \times x \times x \times x \times x ...} _\text{ \((a + b)\) factors } $$

      Now, considering the fundamental definition of a power of \(x\):

      $$ x^n = \hspace{0.2em} \underbrace {x \times x \times x \times x \times x ...} _\text{ \(n\) factors } $$

      We finally obtain,

      $$ \forall x \in\hspace{0.05em} \mathbb{R}^*, \enspace \forall ( a, b) \in \hspace{0.05em} \mathbb{N}^2, $$

      $$ x^a x^b = x^{a+b} $$


    3. For exponents in the integers set\(: (a,b) \in \hspace{0.05em} \mathbb{Z}^2 \)
    4. The division of a number \(a\) by a number \(b\) being just the multiplication of \(a\) by the inverse of \(b\), the previous formulas also work well for exponents in \( \mathbb{Z}\).


    5. For exponents in the real numbers set\(: (a,b) \in \hspace{0.05em} \mathbb{R}^2 \)
    6. Retrieving our expression \((1)\) defined earlier,we do have this:

      $$ \forall x^n \in \hspace{0.05em} \mathcal{D}(x^n), $$

      $$ x^n = \left( \frac{x}{|x|}\right)^{n} \ e^{ln|x^{n}|} \qquad (1) $$

      So,

      $$ \forall (x^a, x^b) \in \hspace{0.05em} \mathcal{D}(x^n)^2, $$

      $$ x^a \ x^b= \left( \frac{x}{|x|}\right)^{a} \ e^{ln|x^{a}|} \ \left( \frac{x}{|x|}\right)^{b} \ e^{ln|x^{b}|} $$

      $$ x^a \ x^b= \left( \frac{x}{|x|}\right)^{a} \left( \frac{x}{|x|}\right)^{b} \ e^{ln|x^{a}|} \ \ e^{ln|x^{b}|} $$

      In the same way as before, let us make a truth table to observe the behaviour of our sign generators.

      $$ \frac{x}{|x|}$$

      $$x^a$$

      $$x^b$$

      $$\left(\frac{x}{|x|}\right)^{a}$$

      $$\left(\frac{x}{|x|}\right)^{b}$$

      $$ \left(\frac{x}{|x|}\right)^{a} \left(\frac{x}{|x|}\right)^{b}$$

      $$x^{a+b}$$

      $$ \left(\frac{x}{|x|}\right)^{a + b}$$

      $$-1$$

      $$odd \ function$$

      $$odd \ function$$

      $$-1$$

      $$-1$$

      $$ 1$$

      $$even \ function$$

      $$1$$

      $$-1$$

      $$odd \ function$$

      $$even \ function$$

      $$-1$$

      $$1$$

      $$ -1$$

      $$odd \ function$$

      $$-1$$

      $$-1$$

      $$even \ function$$

      $$odd \ function$$

      $$1$$

      $$-1$$

      $$ -1$$

      $$odd \ function$$

      $$-1$$

      $$1$$

      $$$$

      $$$$

      $$1$$

      $$1$$

      $$1$$

      $$$$

      $$1$$

      In the first three cases, we have made two cases for even and odd functions because:

      $$ \forall x^n \in \mathcal{D}(x^n), \ \frac{x}{|x|} = -1 \ \Longrightarrow \ \underbrace{\biggl[ \forall x \in \hspace{0.05em} \mathbb{R}_-^* , \enspace \forall n \in \frac{\mathbb{Z}}{2\mathbb{N} + 1} \biggr] } _\text{\( x \ < \ 0 \) and (even and odd functions)} $$

      $$x^a$$

      $$x^b$$

      $$a$$

      $$b$$

      $$a+b$$

      $$x^{a+b}$$

      $$odd \ function$$

      $$odd \ function$$

      $$a \in \frac{2\mathbb{Z} + 1}{2\mathbb{N} + 1} $$

      $$b \in \frac{2\mathbb{Z'} + 1}{2\mathbb{N'} + 1} $$

      $$(a+b) \in \left[ \frac{2\mathbb{Z} + 1}{2\mathbb{N} + 1} + \frac{2\mathbb{Z'} + 1}{2\mathbb{N'} + 1} \right] = \left[ \frac{(2\mathbb{Z} + 1)(2\mathbb{N'} + 1) + (2\mathbb{Z'} + 1)(2\mathbb{N} + 1)}{(2\mathbb{N} + 1)(2\mathbb{N'} + 1)} \right] = \left[ \frac{4\mathbb{Z}\mathbb{N'} + 2\mathbb{Z} + 2\mathbb{N'} + 1 + 4\mathbb{Z'}\mathbb{N} + 2\mathbb{Z'} + 2\mathbb{N} + 1 }{4\mathbb{N}\mathbb{N'} + 2\mathbb{N} + 2\mathbb{N'} + 1} \right] = \frac{2\mathbb{Z''}}{2\mathbb{N''} + 1} $$

      $$even \ function$$

      $$odd \ function$$

      $$even \ function$$

      $$a \in \frac{2\mathbb{Z} + 1}{2\mathbb{N} + 1} $$

      $$b \in \frac{2\mathbb{Z'}}{2\mathbb{N'} + 1} $$

      $$(a+b) \in \left[ \frac{2\mathbb{Z} + 1}{2\mathbb{N} + 1} + \frac{2\mathbb{Z'}}{2\mathbb{N'} + 1} \right] = \left[ \frac{(2\mathbb{Z} + 1)(2\mathbb{N'} + 1) + (2\mathbb{Z'})(2\mathbb{N} + 1)}{(2\mathbb{N} + 1)(2\mathbb{N'} + 1)} \right] = \left[ \frac{4\mathbb{Z}\mathbb{N'} + 2\mathbb{Z} + 2\mathbb{N'} + 1 + 4\mathbb{Z'}\mathbb{N} + 2\mathbb{Z'} }{4\mathbb{N}\mathbb{N'} + 2\mathbb{N} + 2\mathbb{N'} + 1} \right] = \frac{2\mathbb{Z''} + 1}{2\mathbb{N''} + 1} $$

      $$odd \ function$$

      $$even \ function$$

      $$odd \ function$$

      $$a \in \frac{2\mathbb{Z}}{2\mathbb{N} + 1} $$

      $$b \in \frac{2\mathbb{Z'} + 1}{2\mathbb{N'} + 1} $$

      $$Idem$$

      $$odd \ function$$

      In the fourth and last case, we only have positive functions:

      $$ \forall x^n \in \mathcal{D}(x^n), \ \frac{x}{|x|} = 1 \ \Longrightarrow \ \underbrace{ \Biggl[ x \in \hspace{0.05em} \mathbb{R}^*_+, \ n \in \frac{\mathbb{Z}}{2\mathbb{N} + 1} \Biggr] } _\text{\((x \ > \ 0) \) et (even and odd functions)} \lor \ \underbrace{ \Biggl[ x \in \hspace{0.05em} \mathbb{R}^*_+, \enspace n \in \frac{\mathbb{Z}}{2\mathbb{N}^*} \Biggr] } _\text{square roots} \ \lor \ \underbrace{ \Biggl[ x \in \hspace{0.05em} \mathbb{R}^*_+, \enspace n \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \mathbb{Q} \Bigr] \Biggr] } _\text{real numbers} $$


      Having studied all cases possible, we definitely showed that:

      $$ \forall x^n \in \mathcal{D}(x^n), \ \left(\frac{x}{|x|}\right)^{a} \left(\frac{x}{|x|}\right)^{b} = \left(\frac{x}{|x|}\right)^{a+b} $$

      So,

      $$ x^a \ x^b= \left( \frac{x}{|x|}\right)^{a+b} \ e^{ln|x^{a}|} \ e^{ln|x^{b}|} $$

      Now, using the formulas of logarithm and exponential functions:

      $$ x^a \ x^b= \left( \frac{x}{|x|}\right)^{a+b} \ e^{a \ ln|x|} \ e^{b \ ln|x|} $$

      $$ x^a \ x^b= \left( \frac{x}{|x|}\right)^{a+b} \ e^{(a+b) \ ln|x|} $$

      $$ x^a \ x^b= \left( \frac{x}{|x|}\right)^{a+b} \ |x|^{a+b} $$

      We definitely find again the same form as the expression \((1)\). So:


      As a result,

      $$ \forall (x^a, x^b) \in \mathcal{D}(x^n)^2, $$

      $$ x^a \ x^b = x^{a+b} $$


    7. Conclusion
    8. We showed that the formula works in the natural numbers set \( (\mathbb{N}) \), in the integers set \( (\mathbb{Z}) \), but also in the real numbers set \( (\mathbb{R}) \).


      Therefore in any case,

      $$\forall (x^a,y^a) \in \hspace{0.05em} \mathcal{D}(x^n)^2, $$

      $$ x^a \ x^b = x^{a+b} $$


  2. Quotient

  3. The division of a number \(a\) by a number \(b\) being just the multiplication of \(a\) by the inverse of \(b\), the previous formulas also work well with quotients.

    $$ \forall (x^a, x^b) \in \mathcal{D}(x^n)^2, \ x \neq 0, $$

    $$ \frac{x^a}{x^b} = x^{a-b} $$


Power of a power

  1. For exponents in the natural numbers set\(: (a,b) \in \hspace{0.05em} \mathbb{N}^2 \)

  2. Let \( x\in \hspace{0.05em} \mathbb{R}^* \) a non-zero real number and \( (a, b) \in \hspace{0.05em} \mathbb{N}^2 \) two natural numbers.

    Performing the calculation \( (x^a)^b \), we do obtain:

    $$ (x^a)^b = \hspace{0.2em} \underbrace { x^a \times x^a \times x^a } _\text{ \(b\) factors } $$

    $$ (x^a)^b = \hspace{0.2em} \underbrace { \hspace{0.2em} \underbrace {x \times x \times x \times x \times x ...} _\text{ \(a\) factors } \ \times \ \underbrace {x \times x \times x \times x \times x ...} _\text{ \(a\) factors } \ \times \ \underbrace {x \times x \times x \times x \times x ...} _\text{ \(a\) factors } } _\text{ \(b \times a \) factors } $$

    $$ (x^a)^b = \hspace{0.2em} \underbrace { x \times x \times x \times x \times x \times x \times x \times x \times x \times x \times x \times x \times x \times x... } _\text{ \(b \times a \) factors } $$


    Now, considering the fundamental definition of a power of \(x\):

    $$ x^n = \hspace{0.2em} \underbrace {x \times x \times x \times x \times x ...} _\text{ \(n\) factors } $$


    Then, we obtain as a result that,

    $$ (x^a)^b = x^{ab} $$

    By applying the same reasoning by switching \(a\) and \(b\), we do have the flowwing result:

    $$ (x^b)^a = x^{ab} $$


    So,

    $$ \forall x \in \hspace{0.05em} \mathbb{R}^*, \ \forall (a,b) \in \hspace{0.05em} \mathbb{N}^2, $$

    $$ (x^a)^b = (x^b)^a = x^{ab} $$


  3. For exponents in the integers set\(: (a,b) \in \hspace{0.05em} \mathbb{Z}^2 \)

  4. The division of a number \(a\) by a number \(b\) being just the multiplication of \(a\) by the inverse of \(b\), the previous formulas also work well for exponents in \( \mathbb{Z}\).

    $$ \forall x \in \hspace{0.05em} \mathbb{R}, \ \forall (a,b) \in \hspace{0.05em} \mathbb{N}^2, $$

    $$ (x^{-a})^b = \left( \frac{1}{x^a} \right)^b $$

    $$ (x^{-a})^b = \left( \left(\frac{1}{x}\right)^a \right)^b $$

    $$ (x^{-a})^b = \left(\frac{1}{x}\right)^{ab} $$

    $$ (x^{-a})^b = \frac{1}{x^{ab}}$$

    $$ (x^{-a})^b = x^{-ab} $$


    So,

    $$ \forall x \in \hspace{0.05em} \mathbb{R}^*, \ \forall (a,b) \in \hspace{0.05em} \mathbb{Z}^2, $$

    $$ (x^a)^b = (x^b)^a = x^{ab} $$


  5. For exponents in the real numbers set\(: (a,b) \in \hspace{0.05em} \mathbb{R}^2 \)

  6. Let us retrieve our previously defined expression \((1)\):

    $$ \forall x^n \in \hspace{0.05em} \mathcal{D}(x^n), $$

    $$ x^n = \left( \frac{x}{|x|}\right)^{n} \ e^{ln|x^{n}|} \qquad (1) $$

    So,

    $$ \forall x^a \in \hspace{0.05em}\mathcal{D}(x^n), \ \forall b \in \hspace{0.05em} \mathbb{R}, $$

    $$ (x^a)^b = \left( \left( \frac{x}{|x|}\right)^{a} \ e^{ln|x^{a}|} \right)^b $$

    Using the formula of the power of a product, we do obtain:

    $$ (x^a)^b = \left( \left( \frac{x}{|x|}\right)^{a} \right)^b \ \left(e^{ln|x^{a}|}\right)^b $$

    As we did before, let us make a truth table to observe the behaviour of our sign generators.

    $$ \frac{x}{|x|}$$

    $$x^a$$

    $$X^b$$

    $$\left(\frac{x}{|x|}\right)^{a}$$

    $$ \left( \left( \frac{x}{|x|}\right)^{a} \right)^b$$

    $$x^{ab}$$

    $$ \left(\frac{x}{|x|}\right)^{ab}$$

    $$-1$$

    $$odd \ function$$

    $$odd \ function$$

    $$-1$$

    $$ -1$$

    $$odd \ function$$

    $$ -1 $$

    $$-1$$

    $$odd \ function$$

    $$even \ function$$

    $$-1$$

    $$ 1$$

    $$even \ function$$

    $$ 1 $$

    $$-1$$

    $$even \ function$$

    $$odd \ function$$

    $$1$$

    $$ 1$$

    $$even \ function$$

    $$ 1 $$

    $$1$$

    $$$$

    $$$$

    $$1$$

    $$1$$

    $$$$

    $$1$$

    In the three first cases, we set aside even and odd functions:

    $$ \forall x^n \in \mathcal{D}(x^n), \ \frac{x}{|x|} = -1 \ \Longrightarrow \ \underbrace{\biggl[ \forall x \in \hspace{0.05em} \mathbb{R}_-^* , \enspace \forall n \in \frac{\mathbb{Z}}{2\mathbb{N} + 1} \biggr] } _\text{\( (x \ < \ 0) \) and (even and odd functions)} $$

    $$x^a$$

    $$x^b$$

    $$a$$

    $$b$$

    $$a \times b$$

    $$x^{ab}$$

    $$odd \ function$$

    $$odd \ function$$

    $$a \in \frac{2\mathbb{Z} + 1}{2\mathbb{N} + 1} $$

    $$b \in \frac{2\mathbb{Z'} + 1}{2\mathbb{N'} + 1} $$

    $$(a \times b) \in \left[ \frac{2\mathbb{Z} + 1}{2\mathbb{N} + 1} \times \frac{2\mathbb{Z'} + 1}{2\mathbb{N'} + 1} \right] = \left[ \frac{(2\mathbb{Z} + 1)(2\mathbb{Z'} + 1)}{(2\mathbb{N} + 1)(2\mathbb{N'} + 1)} \right] = \left[ \frac{4\mathbb{Z}\mathbb{Z'} + 2\mathbb{Z} + 2\mathbb{Z'} + 1}{4\mathbb{N}\mathbb{N'} + 2\mathbb{N} + 2\mathbb{N'} + 1} \right] = \frac{2\mathbb{Z''} + 1}{2\mathbb{N''} + 1} $$

    $$odd \ function$$

    $$odd \ function$$

    $$even \ function$$

    $$a \in \frac{2\mathbb{Z} + 1}{2\mathbb{N} + 1} $$

    $$b \in \frac{2\mathbb{Z'}}{2\mathbb{N'} + 1} $$

    $$(a+b) \in \left[ \frac{2\mathbb{Z} + 1}{2\mathbb{N} + 1} \times \frac{2\mathbb{Z'}}{2\mathbb{N'} + 1} \right] = \left[ \frac{(2\mathbb{Z} + 1)(2\mathbb{Z'})}{(2\mathbb{N} + 1)(2\mathbb{N'} + 1)} \right] = \left[ \frac{4\mathbb{Z}\mathbb{Z'} + 2\mathbb{Z}}{4\mathbb{N}\mathbb{N'} + 2\mathbb{N} + 2\mathbb{N'} + 1} \right] = \frac{2\mathbb{Z''}}{2\mathbb{N''} + 1} $$

    $$even \ function$$

    $$even \ function$$

    $$odd \ function$$

    $$a \in \frac{2\mathbb{Z}}{2\mathbb{N} + 1} $$

    $$b \in \frac{2\mathbb{Z'} + 1}{2\mathbb{N'} + 1} $$

    $$Idem$$

    $$even \ function$$

    In the fourth and last case, we only have positive functions:

    $$ \forall x^n \in \mathcal{D}(x^n), \ \frac{x}{|x|} = 1 \ \Longrightarrow \ \underbrace{ \Biggl[ x \in \hspace{0.05em} \mathbb{R}^*_+, \ n \in \frac{\mathbb{Z}}{2\mathbb{N} + 1} \Biggr] } _\text{\((x \ > \ 0) \) et (even and odd functions)} \lor \ \underbrace{ \Biggl[ x \in \hspace{0.05em} \mathbb{R}^*_+, \enspace n \in \frac{\mathbb{Z}}{2\mathbb{N}^*} \Biggr] } _\text{square roots} \ \lor \ \underbrace{ \Biggl[ x \in \hspace{0.05em} \mathbb{R}^*_+, \enspace n \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \mathbb{Q} \Bigr] \Biggr] } _\text{real numbers} $$


    This table show well that:

    $$\forall x^n \in \mathcal{D}(x^n), \ \left( \left( \frac{x}{|x|}\right)^{a} \right)^b = \left(\frac{x}{|x|}\right)^{ab} $$

    So,

    $$ (x^a)^b = \left(\frac{x}{|x|}\right)^{ab} \ \left(e^{ln|x^{a}|}\right)^b $$

    As we did before, using the formulas of logarithm and exponential functions:

    $$ (x^a)^b = \left(\frac{x}{|x|}\right)^{ab} \ e^{b \ ln|x^{a}|} $$

    $$ (x^a)^b = \left(\frac{x}{|x|}\right)^{ab} \ e^{ab \ ln|x|} $$

    $$ (x^a)^b = \left(\frac{x}{|x|}\right)^{ab} \ e^{ ln|x^{ab}|} \Longleftrightarrow (x^a)^b = x^{ab} $$

    We do find again the form of the expression \((1)\).


    Also, we can find the second formula by manipulating again the initial expression:

    $$ (x^a)^b = \left( \left(\frac{x}{|x|}\right)^{b} \right)^{a} \ \left(e^{ln|x^{b}|}\right)^a \Longleftrightarrow (x^a)^b = (x^b)^a $$


    As a result,

    $$ \forall (x^a, x^b) \in \hspace{0.05em} \mathcal{D}(x^n)^2, $$

    $$ (x^a)^b = (x^b)^a = x^{ab} $$

  7. Conclusion

  8. We showed that the formula works in the natural numbers set \( (\mathbb{N}) \), in the integers set \( (\mathbb{Z}) \), but also in the real numbers set \( (\mathbb{R}) \).


    So in any case,

    $$ \forall (x^a, x^b) \in \hspace{0.05em} \mathcal{D}(x^n)^2, $$

    $$ (x^a)^b = (x^b)^a = x^{ab} $$


A number raised to the power of zero

Let \( x \in \hspace{0.05em} \mathbb{R}^* \) be a non-zero real number and \( a \in \hspace{0.05em} \mathbb{R} \)a real number.

With the formula of the multiplication of powers, we do have:

$$ x^a x^0 = x^{a+0} $$

$$ x^a x^0 = x^{a} $$

At this stage it seems obvious that,

$$ \forall x \in \hspace{0.05em} \mathbb{R}^*, $$

$$ x^0 = 1 $$


Inverse of a power

Let \( x\in \hspace{0.05em} \mathbb{R^*} \) be a non-zero real number and \(a \in \hspace{0.05em} \mathbb{R}\) a rela number.

Let us find to what on a inverse of a power looks like. We already know that :

$$x^a \times \frac{1}{x^a} = 1 $$

But, \(1 = x^0\), so:

$$x^a \times \frac{1}{x^a} = x^0 $$

With the formula of the product of a power, we then have:

$$x^a \times x^{-a} = x^0 $$


So, by indentification,

$$ \forall x^a \in \mathcal{D}(x^n), $$

$$ \frac{1}{x^a} = x^{-a}$$


nth root of a number

  1. Square root of a number

  2. Let us find what is the power \(p\) of any square root. We already know that:

    $$ \forall x \in \hspace{0.05em} \mathbb{R}^+, \ \sqrt{x} \ \sqrt{x}= x $$

    Avec the formula of the product of a power:

    $$ \forall x^p \in \hspace{0.05em} \mathcal{D}(x^n)^2, \ x^p \ x^p = x^{2p} $$

    Now combining these two formulas:

    $$ x^1 = x^{2p} \Longrightarrow 2p = 1 \Longrightarrow p = \frac{1}{2} $$


    So,

    $$ \forall x \in \hspace{0.05em} \mathbb{R}^+, $$

    $$ x^{\frac{1}{2}} = \sqrt{x} $$


  3. nth root of a number

  4. By applying the same process:

    $$ \forall a \in \hspace{0.05em} \mathbb{Z}^*, \ \Bigl[ \forall x \in \hspace{0.05em} \mathbb{R}_+, \ n \in \{2a\} \Bigr] \lor \Bigl[ \forall x \in \hspace{0.05em} \mathbb{R}, \ n \in \{2a + 1\} \Bigr], $$

    $$ \underbrace{\sqrt[n]{x} \ \sqrt[n]{x} \ \sqrt[n]{x} ... } _\text{n fois} \ = x $$

    $$ \underbrace{x^p \ x^p \ x^p ... } _\text{n fois} \ = x^{np} $$

    And in the same way:

    $$ x^1 = x^{np} \Longrightarrow np = 1 \Longrightarrow p = \frac{1}{n} $$


    So,

    $$ \forall a \in \hspace{0.05em} \mathbb{Z}^*, \ \Bigl[ \forall x \in \hspace{0.05em} \mathbb{R}_+, \ n \in \{2a\} \Bigr] \lor \Bigl[ \forall x \in \hspace{0.05em} \mathbb{R}, \ n \in \{2a + 1\} \Bigr], $$

    $$ x^{\frac{1}{n}}= \sqrt[n]{x} $$


Recap table of the formulas of the powers of x

$$ with \enspace \mathcal{D}(x^n) = \Biggl[(x = 0) \land (n \in \mathbb{R}) \Biggr] \lor \underbrace{ \overbrace { \Biggl[ \forall x \in \hspace{0.05em} \mathbb{R}^*, \enspace \forall n \in \frac{\mathbb{Z}}{2\mathbb{N} + 1 } \Biggr] } ^\text{even and odd functions} \lor \overbrace { \Biggl[ \forall x \in \hspace{0.05em} \mathbb{R}^*_+, \enspace \forall n \in \frac{\mathbb{Z}}{2\mathbb{N}^*} \Biggr] } ^\text{ square root } } _\text{\(n \ \in \ \mathbb{Q}\) under an irreducible form} \lor \underbrace{ \Biggl[ \forall x \in \hspace{0.05em} \mathbb{R}^*_+, \enspace \forall n \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \mathbb{Q} \Bigr] \Biggr] } _\text{irrational numbers}$$

Return Index
Scroll top Go to the top of the page