French flag Arrows English flag
Sun Arrows Moon
Return Index

The properties of fractions

Let \((a, c) \in \hspace{0.05em} \mathbb{R}^2 \) be two real numbers, and \((b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2 \) two non-zero real numbers.


Cross product

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, $$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc $$


Ratio between respectives numerators and denominators

$$ \forall (a, b, c,d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^4, \ \Bigl \{ (a+b),(c+d) \Bigr \} \ \neq 0,$$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a + b}{a} = \frac{c+d}{c} \Longleftrightarrow \frac{a}{a + b} = \frac{c}{c + d} $$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a+b}{b} = \frac{c+d}{d} \Longleftrightarrow \frac{b}{a + b} = \frac{d}{c + d} $$

The same ratios are possibles replacing all \( (+) \) by \( (-) \).


Ratio between respectives sums an differences

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \Bigl \{ (a-b), (c-d) \Bigr \} \ \neq 0, $$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d} $$


Addition of numerators and denominators

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \enspace \ \Bigl \{ (b+d) \Bigr \} \ \neq 0, $$

$$ \frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$$


The same relation is possible replacing \( (+) \) by \( (-) \).


  1. Generalization
  2. On the whole, with a serie of \(n \) numerators and \(m \) denominators:

    $$ \forall (a, c, e ...) \in \hspace{0.05em} \mathbb{R}^n, \enspace (b, d, f...) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^m, \enspace \ \Bigl \{ (b\pm d \pm f ...) \Bigr \} \ \neq 0, $$

    $$ \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \ ... \ = \frac{a\pm c \pm e \pm \ ...}{b\pm d \pm f \pm \ ...}$$

Recap table of the properties formulas of fractions


Demonstrations

Let \((a, c) \in \hspace{0.05em} \mathbb{R}^2 \) be two real numbers, and \( (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2 \) two non-zero real numbers.

And let \((H)\) be the following hypothesis:

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \hspace{1em} \frac{a}{b} = \frac{c}{d} \qquad (H) $$


Cross product

Starting from the hypothesis \((H)\):

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \hspace{1em} \frac{a}{b} = \frac{c}{d} \qquad (H) $$


We multiply both members by the same number \( bd \):

$$ \frac{abd}{b} = \frac{cbd}{d} $$

$$ ad = cb $$


And finally,

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, $$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc $$


Ratio between respectives numerators and denominators

Starting from the hypothesis \((H)\):

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \hspace{1em} \frac{a}{b} = \frac{c}{d} \qquad (H) $$

With the result of the cross product we do have:

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc $$

Let us add \( ac \) on both sides of the equation:

$$ ad + ac = bc + ac $$

We factorize it:

$$ a(d+c) = (a+b)c $$

$$ \frac{a}{a + b} = \frac{c}{c + d} \qquad(1) $$

Moreover, rearranging \((1)\) by applying the inverse on both sides:

$$ \frac{a + b}{a} = \frac{c+d}{c} \qquad(2) $$

Now, both expressions \((1)\) and \((2)\) had to support a new existing condition to be compliant:

$$\Bigl \{ a, c, (a+b),(c+d) \Bigl \} \ \neq 0 $$


As a result we do have,

$$ \forall (a, b, c,d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^4, \ \Bigl \{ (a+b),(c+d) \Bigr \} \ \neq 0,$$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a + b}{a} = \frac{c+d}{c} \Longleftrightarrow \frac{a}{a + b} = \frac{c}{c + d} $$


Consequently, reproducing the same exact reasoning adding now the term \( bd \), we obtain the following result:

$$ \forall (a, b, c,d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^4, \ \Bigl \{ (a+b),(c+d) \Bigr \} \ \neq 0,$$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a+b}{b} = \frac{c+d}{d} \Longleftrightarrow \frac{b}{a + b} = \frac{d}{c + d} $$


It is possible to find out the same expressions replacing all \( (+) \) by \( (-) \), not by adding terms but by removing it.

$$ \forall (a, b, c,d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^4, \ \Bigl \{ (a\textcolor{#A65757}{-}b),(c\textcolor{#A65757}{-}d) \Bigr \} \ \neq 0,$$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a \textcolor{#A65757}{-} b}{a} = \frac{c\textcolor{#A65757}{-}d}{c} \Longleftrightarrow \frac{a}{a \textcolor{#A65757}{-} b} = \frac{c}{c \textcolor{#A65757}{-} d} $$


$$ \forall (a, b, c,d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^4, \ \Bigl \{ (a\textcolor{#A65757}{-}b),(c\textcolor{#A65757}{-}d) \Bigr \} \ \neq 0,$$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a\textcolor{#A65757}{-}b}{b} = \frac{c\textcolor{#A65757}{-}d}{d} \Longleftrightarrow \frac{b}{a \textcolor{#A65757}{-} b} = \frac{d}{c \textcolor{#A65757}{-} d} $$


Ratio between respectives sums an differences

Starting from the hypothesis \((H)\):

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \hspace{1em} \frac{a}{b} = \frac{c}{d} \qquad (H) $$

With the result of the cross product we do have:

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc $$

Let us add both terms \( ac \) and \( (-bd) \) on both sides of the equation:

$$ ad + ac - bd = bc + ac -bd $$

Then, as our hypothesis is that \( ad = bc \), we can add \( (-bc) \) on one side and add \( (-ad) \) on another.

$$ ad + ac - bd - bc = bc + ac -bd - ad $$

We factorize by \( a\) and also by \( b\) to obtain:

$$ a(c+d) - b(c+d) = a(c-d) + b(c-d) $$

$$ (a-b)(c+d) = (a+b)(c-d) $$

$$ \frac{a+b}{a-b} = \frac{c+d}{c-d} \qquad(3) $$

But, the expression \((3)\) has to support a new existing condition to be compliant:

$$\Bigl \{ (a-b), (c-d) \Bigl \} \ \neq 0 $$

On the whole, depending of which factor is on the denominator, we had to add the good existing condition to it to be non-zero.


Finally we do have,

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2,, \Bigl \{ (a-b), (c-d) \Bigr \} \ \neq 0, $$

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d} $$


Addition of numerators and denominators

Starting from the hypothesis \((H)\):

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \hspace{1em} \frac{a}{b} = \frac{c}{d} \qquad (H) $$

With the result of the cross product we do have:

$$ \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc $$


Let us add \( cd \) on both sides of the equation:

$$ ad + cd = bc + cd $$

$$ d(a + c) = c(b + d) $$

$$ \frac{a + c}{b + d} = \frac{c}{d} $$


And finally we do have,

$$ \forall (a, c) \in \hspace{0.05em} \mathbb{R}^2, \enspace (b, d) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^2, \enspace \ \Bigl \{ (b+d) \Bigr \} \ \neq 0, $$

$$ \frac{a}{b} = \frac{c}{d} = \frac{a+c}{b+d}$$


The same relation is possible replacing all \( (+) \) by \( (-) \), not by adding \( cd \) but by removing it.


  1. Generalization

  2. On the whole, with a serie of \(n \) numerators and \(m \) denominators:

    $$ \forall (a, c, e ...) \in \hspace{0.05em} \mathbb{R}^n, \enspace (b, d, f...) \in \hspace{0.05em} \bigl[\mathbb{R}^* \bigr]^m, \enspace \ \Bigl \{ (b\pm d \pm f ...) \Bigr \} \ \neq 0, $$

    $$ \frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \ ... \ = \frac{a\pm c \pm e \pm \ ...}{b\pm d \pm f \pm \ ...}$$


Recap table of the properties formulas of fractions

Return Index
Scroll top Go to the top of the page