French flag Arrows English flag
Sun Arrows Moon
Return Index

The properties of complex numbers

Modules\(:|z|\)

We write \( |z| \) the module of a complex number \( z \).

Let be \( (x, y) \in \hspace{0.05em} \mathbb{R}^2, \enspace z \in \mathbb{C}, \enspace \Biggl \{ \begin{gather*} z = x + iy \\ |z| = \sqrt{x^2 + y^2 } \end{gather*} \)


Modules of the opposite and the conjugate

$$ \forall z \in \mathbb{C}, $$

$$ | z | = | - z | = |\overline{z}| $$


Module of a product

$$ \forall (z, z') \in \mathbb{C}, $$

$$ | z z' | = | z| \hspace{0.2em}. |z' |$$


In the same way, we will have:

$$ \forall z \in \mathbb{C}, \enspace \forall z' \in \mathbb{C^*}, $$

$$ \left| \frac{z}{z'} \right| = \frac{| \ z \ |}{ |z' |} $$


Module of a complex number raised to an integer power

$$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{N}, $$

$$ | z^n | = | z |^n $$

Arguments\(: arg(z) \)

Let be \( (x, y) \in \hspace{0.05em} \mathbb{R}^2, \enspace z \in \mathbb{C}, \)

$$ \Biggl \{ \begin{gather*} z = x + iy \\ z = |z|.\left(cos(\theta) + isin(\theta) \right) \end{gather*} $$

We write \( arg(z) \) the argument of a cmplex number \( z \).


Arguments of conjugate and opposite

$$ \forall z \in \mathbb{C}, $$

$$ \Biggl \{ \begin{gather*} arg(\overline{z}) = -arg(z) \\ arg( -z) = \pi + arg(z) \end{gather*} $$


Argument of a product

$$ \forall z, z' \in \hspace{0.05em} \mathbb{C}^2, $$

$$ arg( z z') = arg(z) + arg(z') $$


Argument of an inverse

$$ \forall z \in \mathbb{C^*}, $$

$$ arg\left(\frac{1}{z}\right) = -arg(z) $$


Argument of a quotient

$$ \forall z \in \mathbb{C}, \enspace \forall z' \in \mathbb{C^*},$$

$$ arg\left(\frac{z}{z'}\right) = arg(z) -arg(z') $$


Argument of a complex number raised to an integer power

$$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{Z},$$

$$ arg(z^n) = n . arg(z) $$

Conjugates\(: \overline{z}\)

We write \( \overline{z} \) the conjugate of a complex number \( z \).

Let be \( (x, y) \in \hspace{0.05em} \mathbb{R}^2, \enspace z \in \mathbb{C}, \enspace \Biggl \{ \begin{gather*} z = x + iy \\ \overline{z} = x -iy \end{gather*} \)


Conjugate of a sum

$$ \forall (z_1, z_2) \in \mathbb{C}, $$

$$ \overline{z_1 + z_2} \hspace{0.2em} = \hspace{0.2em} \overline{z_1} \hspace{0.2em} + \hspace{0.2em} \overline{z_2} $$


In the same way,

$$ \forall (z_1, z_2) \in \mathbb{C}, $$

$$ \overline{z_1 \textcolor{#8E5B5B}{-} z_2} \hspace{0.2em} = \hspace{0.2em} \overline{z_1} \hspace{0.2em} \textcolor{#8E5B5B}{-} \hspace{0.2em} \overline{z_2} $$


Conjugate of a product

$$ \forall (z_1, z_2) \in \mathbb{C}, $$

$$ \overline{z_1 . z_2} \hspace{0.2em} = \hspace{0.2em} \overline{z_1} \hspace{0.2em}. \hspace{0.2em} \overline{z_2} $$


Conjugate of a quotient

$$ \forall z_1 \in \mathbb{C}, \enspace z_2 \in \hspace{0.05em} \mathbb{C}^*, $$

$$ \overline{ \left( z_1 \over z_2 \right)} \hspace{0.2em} = \hspace{0.2em} \frac{\overline{z_1}}{ \overline{z_2}} $$


Complex number multiplied by its conjugate

$$ \forall z \in \mathbb{C}, $$

$$ z \hspace{0.2em} . \overset{-}{z} = x^2 + y^2 $$


Conjugate of a complex number raised to an integer power

$$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{N},$$

$$ \overline{z^n} \hspace{0.2em} = \hspace{0.2em} (\overline{z})^n $$


Recap table of the properties of the complex numbers formulas

Click on the title to access to the recap table.


Demonstrations

Modules\(: |z|\)


Modules of the opposite and the conjugate

Let us write the complex numbers \( |-z|\) et \( | \overline{z} | \) under their algebraic form.

$$ \Biggl \{ \begin{gather*} |-z| = \sqrt{(-x)^2 + (-y)^2} = \sqrt{x^2 + y^2 } = |z| \\ | \overline{z} | = \sqrt{x' + (-y)^2 } = \sqrt{x^2 + y^2 }= |z| \end{gather*} $$

And finally,

$$ \forall z \in \mathbb{C}, $$

$$ | z | = | - z | = |\overline{z}| $$


Module of a product

Let us write the complex numbers \( z, z' \) under their algebraic form.

$$ \Biggl \{ \begin{gather*} z = x + iy \\ z' = x' + iy' \end{gather*} $$

Calculating \( z z' \), we do have:

$$ z z' = (x + iy ) (x' + iy' )$$
$$ z z' = (xx' - yy') + i(x y' + x' y) $$

Then, calculating \( | z z' | \):

$$ | z z' | = \sqrt{ (xx' - yy')^2 + (x y' + x' y)^2 } $$
$$ | z z' | = \sqrt{ (xx')^2 -2xx'yy' + (yy')^2 + (x y')^2 +2x y'x' y + (x' y)^2 } $$
$$ | z z' | = \sqrt{ (xx')^2 + (yy')^2 + (x y')^2 + (x' y)^2 } \qquad (1) $$

In the end, calculating \( | z| \hspace{0.2em}. |z' | \) we do have:

$$ | z| \hspace{0.2em}. |z' | = \sqrt{ (x^2 + y^2) }\sqrt{ \left((x')^2 + (y')^2 \right) } $$
$$ | z| \hspace{0.2em}. |z' | = \sqrt{ (x^2 + y^2)\left((x')^2 + (y')^2 \right) } $$
$$ | z| \hspace{0.2em}. |z' | = \sqrt{ x^2(x')^2 + x^2(y')^2 + y^2(x')^2 + y^2(y')^2 } $$
$$ | z| \hspace{0.2em}. |z' | = \sqrt{ (xx')^2 + (yy')^2 + (x y')^2 + (x' y)^2 } \qquad (2) $$

We now notice that both expressions \( (1) \) and \( (2) \) are equals, so:

$$ \forall (z, z') \in \mathbb{C}, $$

$$ | z z' | = | z| \hspace{0.2em}. |z' |$$

In the same way, we will have:

$$ \forall z \in \mathbb{C}, \enspace \forall z' \in \mathbb{C^*}, $$

$$ \left| \frac{z}{z'} \right| = \frac{| \ z \ |}{ |z' |} $$


Module of a complex number raised to an integer power

Let us write the complex number \(z\) under its algebraic form.

$$ z= x + iy $$

Let us no calculate \(z^n\):

$$ z^n= (x + iy)^n $$

Then,

$$ | z^n | = \sqrt{ (x^2 + y^2)^n }= (x^2 + y^2)^{\frac{n}{2}} $$

But,

$$ | z | = \sqrt{x^2 + y^2}$$
$$ | z |^n = \left(\sqrt{x^2 + y^2} \right)^n = (x^2 + y^2)^{\frac{n}{2}} $$

We definitely have,

$$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{N}, $$

$$ | z^n | = | z |^n $$


Arguments\(: arg(z) \)


Arguments of conjugate and opposite

Let us write the complex number \(z\) under its trigonometric form.

$$ z = |z|.\left(cos(\theta) + isin(\theta) \right) $$
  1. For the conjugate \(\overline{z}\)
  2. .

    Let us write the complex number \( \overline{z} \) under its trigonometric form.

    $$\overline{z} = |z|.\left( cos(\theta) - isin(\theta) \right) $$

    But,

    $$ \Biggl \{ \begin{gather*} cos(\theta) = cos(-\theta) \\ -sin(\theta) = sin(-\theta) \end{gather*} $$

    So,

    $$\overline{z} = |z|.\left( cos(-\theta) + isin(-\theta) \right) $$

    Hence,

    $$ arg(\overline{z}) = -arg(z) $$
  3. For the opposite \( -z \)
  4. $$-z = -|z|.\left( cos(\theta) + isin(\theta) \right) $$
    $$-z = |z|.\left( -cos(\theta) - isin(\theta) \right) $$

    But,

    $$ \Biggl \{ \begin{gather*} -cos(\theta) = cos(\pi + \theta) \\ -sin(\theta) = sin(\pi + \theta) \end{gather*} $$

    So,

    $$ -z = |z|.\left( cos(\pi + \theta) + isin(\pi + \theta) \right) $$

    Hence,

    $$ arg(-z) = \pi +arg(z) $$

And as a result,

$$ \forall z \in \mathbb{C}, $$

$$ \Biggl \{ \begin{gather*} arg(\overline{z}) = -arg(z) \\ arg( -z) = \pi + arg(z) \end{gather*} $$


Argument of a product

Let us write the complex numbers \( z, z' \) under their trigonometric form.

$$ \Biggl \{ \begin{gather*} z = |z|.\left(cos(\theta) + isin(\theta) \right) \\ z' = |z'|.\left(cos(\theta') + isin(\theta') \right) \end{gather*} $$

Performing the product \( z z' \), we do obtain:

$$ z z' = |z|.|z'|\left(cos(\theta) + isin(\theta) \right) \left(cos(\theta') + isin(\theta') \right) $$

Thanks to the properties of the module \( | z | \), we know that:

$$ \forall (z, z') \in \mathbb{C}, $$
$$ |z|.|z'| = |zz'|$$

So,

$$ z z' = |zz'| \Bigl[ \left(cos(\theta)cos(\theta') -sin(\theta) sin(\theta') \right) + i\left(cos(\theta)sin(\theta') + sin(\theta)cos(\theta') \right) \Bigr] $$

Now, thanks to the trigonometric addition formulas, we know that:

$$ \forall (\alpha, \beta) \in \hspace{0.05em} \mathbb{R}^2, \enspace \Biggl \{ \begin{gather*} sin(\alpha + \beta) = sin(\alpha) cos(\beta) + sin(\beta) cos(\alpha) \\ cos(\alpha + \beta) = cos(\alpha) cos(\beta) - sin(\alpha) sin(\beta) \end{gather*} $$

So that,

$$ z z' = |zz'| \Bigl[ cos(\theta + \theta') + isin(\theta + \theta') \Bigr] $$

And as a result,

$$ \forall z, z' \in \hspace{0.05em} \mathbb{C}^2, $$

$$ arg( z z') = arg(z) + arg(z') $$


Argument of an inverse

Let \(z \in \hspace{0.05em}\mathbb{C}^*\) be a non-zero complex number.


Let us start fro mthe following equation:

$$ z \times \frac{1}{z} = 1 $$

Then,

$$ arg( z \times \frac{1}{z}) = arg(1) $$

But, we know that the argument of a product is the sum of the product's factors of this product:

$$ \forall z, z' \in \hspace{0.05em} \mathbb{C}^2, $$
$$ arg( z z') = arg(z) + arg(z') $$

So that,

$$ arg(z) + arg\left(\frac{1}{z}\right) = 0 $$

And finally,

$$ \forall z \in \mathbb{C^*}, $$

$$ arg\left(\frac{1}{z}\right) = -arg(z) $$


Argument of a quotient

Let \(z \in \mathbb{C}\) be a complex number and \(z' \in \hspace{0.05em}\mathbb{C}^*\) a non-zero complex number.


Let us write the quotient \(\frac{z}{z'}\) under the form of a product:

$$ \frac{z}{z'} = z \times \frac{1}{z'} $$

But, we know that the argument of a product is the sum of the product's factors of this product:

$$ \forall z, z' \in \hspace{0.05em} \mathbb{C}^2, $$
$$ arg( z z') = arg(z) + arg(z') $$

So that,

$$ arg\left(z \times \frac{1}{z'}\right) = arg(z) + arg\left(\frac{1}{z'}\right) $$

Now, we know that the argument of the inverse of a complex number is the opposite this complex number's argument:

$$ \forall z \in \mathbb{C^*}, $$
$$ arg\left(\frac{1}{z}\right) = -arg(z) $$

So,

$$ arg\left(z \times \frac{1}{z'}\right) = arg(z) -arg(z') $$

And as a result,

$$ \forall z \in \mathbb{C}, \enspace \forall z' \in \mathbb{C^*},$$

$$ arg\left(\frac{z}{z'}\right) = arg(z) -arg(z') $$


Argument of a complex number raised to an integer power

Let us write the complex number \( z \) under its trigonometric form.

$$ z = |z|.\left(cos(\theta) + isin(\theta) \right) $$
  1. Calculating the square\(: z^2 \)
  2. $$ z^2 = \Bigl[ |z|.\left(cos(\theta) + isin(\theta) \right) \Bigr]^2 $$

    Thanks to the properties of the module raised to an integer power \( | z^n | \), we know that:

    $$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{N}, $$
    $$ |z^n| = |z|^n $$

    So,

    $$ z^2 = |z|^2.\left(cos(\theta) + i.sin(\theta) \right)^2$$
    $$ z^2 = |z|^2.\left(cos^2(\theta) + 2i.sin(\theta)cos(\theta) - sin^2(\theta) \right)$$
    $$ z^2 = |z|^2.\left(cos^2(\theta) - sin^2(\theta) + 2i.sin(\theta)cos(\theta) \right)$$

    Now, thanks to trigonometric duplicaiton formulas, we know that:

    $$ \forall \alpha \in \mathbb{R}, \enspace \Biggl \{ \begin{gather*} sin(2\alpha) = 2 sin(\alpha) cos(\alpha) \\ cos(2\alpha) = cos^2(\alpha) - sin^2(\alpha) \end{gather*} $$

    Thus, we identify that:

    $$ z^2 = |z|^2.\left(cos(2\theta) + i .sin(2\theta) \right)$$

    And,

    $$ arg(z^2) = 2 . arg(z) $$

  3. Proof by a recurrence
  4. Let us show by a recurrence that:

    $$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{Z},$$

    $$ arg(z^n) = n . arg(z) \qquad (S_n) $$

    1. Calculating the first term
    2. $$ z = |z|.\left(cos(\theta) + isin(\theta) \right) $$
      $$ z^0 = |z|^0.\left(cos(0 \times \theta) + isin( 0 \times \theta) \right) $$
      $$ 1 = 1 \times ( 1 + 0) $$

      Thus, \((S_0)\) is true.


    3. Heredity
      1. With an exponent \( n \) in the natural numbers set \( (n \in \mathbb{N}) \)
      2. Let \( k \in \mathbb{N} \) be a nutral number.

        Let us assume that the statement \((S_k)\) is true for all \( k \), and let us verify if it is also the case for \((S_{k + 1})\).

        If it is so, we should obtain as a result that:

        $$ arg(z^{k+1}) = (k+1) . arg(z) \qquad (S_{k + 1}) $$

        Consequently, let us calculate \(z^{k+1}\):

        $$ z^{k+1} = |z|^{k+1}.\left(cos(\theta) + isin(\theta) \right)^{n+1} $$

        But, we know that the argument of a product is the sum of the product's factors of this product:

        $$ \forall z, z' \in \hspace{0.05em} \mathbb{C}^2, $$
        $$ arg( z z') = arg(z) + arg(z') $$

        So in our case that,

        $$ arg(z^{k+1}) = arg( z . z^k) = arg(z) + arg(z^k) $$
        $$ arg(z^{k+1}) = arg(z) + arg(z) + arg(z^{k-1}) $$

        And so on until:

        $$ arg\left(z^{k+1}\right) = (k+1).arg(z) $$

        Thus, \((S_{k + 1})\) is true in the natural numbers set \( \mathbb{N}\).

        Let us now proove it backwards.


      3. With an exponent \( n \) in the natural integers set \( (n \in \mathbb{Z}) \)
      4. Let \( k \in \mathbb{Z} \) be an integer.

        Let us assume that the statement \((S_k)\) is true for all \( k \), and let us verify if it is also the case for \((P_{k - 1})\).

        If it is so, we should obtain as a result that:

        $$ arg(z^{k-1}) = (k-1) . arg(z) \qquad (P_{k - 1}) $$

        Calculating now \(z^{k-1}\), we do have:

        $$ z^{k-1} = \frac{z^k}{z} $$

        But, we know that the argument of a quotient of two complex numbers is the difference of arguments of these numbers:

        $$ \forall z \in \mathbb{C}, \enspace \forall z' \in \mathbb{C^*},$$
        $$ arg\left(\frac{z}{z'}\right) = arg(z) -arg(z') $$

        So that,

        $$ arg(z^{k-1}) = arg\left( \frac{z^k}{z} \right) = arg(z^k) - arg(z) $$
        $$ arg(z^{k-1}) = k.arg(z) - arg(z) $$
        $$ arg(z^{k-1}) = (k-1).arg(z) $$

        Thus, \((P_{k - 1})\) is true for the integers set \( \mathbb{Z}\).


    4. Conclusion
    5. The statement \((S_n)\) is true for its first term \(n_0 = 0\) and it is hereditary from terms to terms for all \(n \in \mathbb{Z}\), increasingly and decreasingly.

      Thus, by the recurrence principle, this is true for all \(n \in \mathbb{Z}\).


And finally, as a result we do have,

$$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{Z},$$

$$ arg(z^n) = n . arg(z) $$

Conjugates\(: \overline{z}\)


Conjugate of a sum

Let us write the complex numbers \( z_1, z_2 \) under their algebraic form.

$$ \Biggl \{ \begin{gather*} z_1 = x_1 + iy_1 \\ z_2 = x_2 + iy_2 \end{gather*} $$

Performing their sum, we do have:

$$ z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2) $$

Now, applying the conjugate of it:

$$ \overline{z_1 + z_2} \hspace{0.2em} = (x_1 + x_2) - i(y_1 + y_2) $$
$$ \overline{z_1 + z_2} \hspace{0.2em} = \hspace{0.2em} \underbrace{(x_1 - iy_1)} _\text{\( \overset{-}{z_1} \)} \hspace{0.2em} + \hspace{0.2em} \underbrace{(x_2 - iy_2)} _\text{\( \overset{-}{z_2} \)} $$

And finally,

$$ \forall (z_1, z_2) \in \mathbb{C}, $$

$$ \overline{z_1 + z_2} \hspace{0.2em} = \hspace{0.2em} \overline{z_1} \hspace{0.2em} + \hspace{0.2em} \overline{z_2} $$


In the same way,

$$ \overline{z_1 \textcolor{#8E5B5B}{-} z_2} \hspace{0.2em} = \hspace{0.2em} \overline{z_1} \hspace{0.2em} \textcolor{#8E5B5B}{-} \hspace{0.2em} \overline{z_2} $$


Conjugate of a product

Let us write the complex numbers \( z_1, z_2 \) under their algebraic form.

$$ \Biggl \{ \begin{gather*} z_1 = x_1 + iy_1 \\ z_2 = x_2 + iy_2 \end{gather*} $$

Performing their product, we do have:

$$ z_1 . z_2 = (x_1 + iy_1 ) (x_2 + iy_2 )$$
$$ z_1 . z_2 = (x_1x_2 - y_1y_2) + i(x_1 y_2 + x_2 y_1) $$

Now, applying the conjugate of it:

$$ \overline{z_1 . z_2} \hspace{0.2em} = (x_1x_2 - y_1y_2) - i(x_1 y_2 + x_2 y_1) \qquad (3) $$

Let us now calculate the product \( \overline{z_1}. \overline{z_2} \) separately:

$$ \overline{z_1} \hspace{0.2em}.\hspace{0.2em} \overline{z_2} \hspace{0.2em} = (x_1 - iy_1)(x_2 + iy_2) $$
$$ \overline{z_1} \hspace{0.2em}.\hspace{0.2em} \overline{z_2} \hspace{0.2em} = (x_1x_2 - y_1y_2) - i(x_1 y_2 + x_2 y_1) \qquad (4) $$

After having calculated both expressions \( (3) \) and \( (4) \), we notice that they are equals:

$$ \overline{z_1 \hspace{0.2em}.\hspace{0.2em} z_2} \hspace{0.2em} = \hspace{0.2em} \overline{z_1}. \overline{z_2} \ = (x_1x_2 - y_1y_2) - i(x_1 y_2 + x_2 y_1) $$

As a result we do have,

$$ \forall (z_1, z_2) \in \mathbb{C}, $$

$$ \overline{z_1 . z_2} \hspace{0.2em} = \hspace{0.2em} \overline{z_1} \hspace{0.2em}. \hspace{0.2em} \overline{z_2} $$


Conjugate of a quotient

Let us write the complex numbers \( z \) and \( \overset{-}{z} \) under their algebraic form.

$$ \Biggl \{ \begin{gather*} z= x + iy \\ \overset{-}{z} = x - iy \end{gather*} $$

Performing their quotient, we do have:

$$ \frac{ z_1 }{ z_2 } = \frac{ x_1 + iy_1 }{ x_2 + iy_2 }$$

Multiplying both numerator and denominator by the denominator's conjugate,

$$ \frac{ z_1 }{ z_2 } = \frac{ (x_1 + iy_1)(x_2 - iy_2) }{ (x_2 + iy_2)(x_2 - iy_2) }$$

Thanks to the property of a complex number mutliplied by its conjugate, we do have:

$$ \forall z \in \mathbb{C}, $$
$$ z \hspace{0.2em} . \overset{-}{z} = x^2 + y^2 $$

So in our case,

$$ \frac{ z_1 }{ z_2 } = \frac{ (x_1 + iy_1)(x_2 - iy_2) }{ x_2^2 + y_2^2 }$$

Then, developping the numerator,

$$ \frac{ z_1 }{ z_2 } = \frac{ x_1x_2 - i(x_1 y_2) + i(x_2 y_1) + y_1 y_2 }{ x_2^2 + y_2^2 }$$
$$ \frac{ z_1 }{ z_2 } = \frac{ x_1x_2 + y_1 y_2 + i(-x_1 y_2 + x_2 y_1) }{ x_2^2 + y_2^2 }$$

Now, applying the conjugate of it:

$$\overline{ \left( z_1 \over z_2 \right)} \hspace{0.2em} = \frac{ x_1x_2 + y_1 y_2 - i(-x_1 y_2 + x_2 y_1) }{ x_2^2 + y_2^2 }$$
$$\overline{ \left( z_1 \over z_2 \right)} \hspace{0.2em} = \frac{ x_1x_2 + y_1 y_2 + i(x_1 y_2 - x_2 y_1) }{ x_2^2 + y_2^2 } \qquad (5) $$

Let us now calculate the quotient \( \frac{\overline{z_1}}{ \overline{z_2}} \) separately:

$$\hspace{0.2em} \frac{\overline{z_1}}{ \overline{z_2}} = \frac{ x_1 - iy_1 }{ x_2 - iy_2 }$$

In the same way as as above,

$$\hspace{0.2em} \frac{\overline{z_1}}{ \overline{z_2}} = \frac{ (x_1 - iy_1)(x_2 + iy_2) }{ (x_2 - iy_2)(x_2 + iy_2) }$$
$$\hspace{0.2em} \frac{\overline{z_1}}{ \overline{z_2}} = \frac{ x_1x_2 + y_1 y_2 + i(x_1 y_2 - x_2 y_1) }{ x_2^2 + y_2^2 } \qquad (6) $$

After having calculated both expressions \( (5) \) and \( (6) \), we notice that they are equals:

$$\overline{ \left( z_1 \over z_2 \right)} \hspace{0.2em} = \hspace{0.2em} \frac{\overline{z_1}}{ \overline{z_2}} = \frac{ x_1x_2 + y_1 y_2 + i(x_1 y_2 - x_2 y_1) }{ x_2^2 + y_2^2 } $$

And finally,

$$ \forall z_1 \in \mathbb{C}, \enspace z_2 \in \hspace{0.05em} \mathbb{C}^*, $$

$$ \overline{ \left( z_1 \over z_2 \right)} \hspace{0.2em} = \hspace{0.2em} \frac{\overline{z_1}}{ \overline{z_2}} $$


Complex number multiplied by its conjugate

Let us write the complex numbers \( z \) and \( \overset{-}{z} \) under their algebraic form.

$$ \Biggl \{ \begin{gather*} z= x + iy \\ \overset{-}{z} = x - iy \end{gather*} $$

Let us calculate their product:

$$ z \hspace{0.2em} . \overset{-}{z} = (x + iy)(x - iy) $$

We know from the the third quadratic remarkable identity that:

$$ \forall (a, b) \in \mathbb{R},$$
$$ (a + b)(a - b) = a^2 - b^2 $$

So in our case,

$$ z \hspace{0.2em} . \overset{-}{z} = x^2 - i^2y^2 $$
$$ z \hspace{0.2em} . \overset{-}{z} = x^2 + y^2 $$

And finally,

$$ \forall z \in \mathbb{C}, $$

$$ z \hspace{0.2em} . \overset{-}{z} = x^2 + y^2 $$


Conjugate of a complex number raised to an integer power

Let us write the complex numbers \( z \) under its trigonometric form.

$$ z = |z|.\left(cos(\theta) + i.sin(\theta)\right) $$

Calculating \( z^n \), we do have:

$$ z^n= |z|^n.\left(cos(\theta) + i.sin(\theta)\right)^n $$

But we know from the Moivre's formula that:

$$ \forall \theta \in \mathbb{R}, \enspace \forall n \in \mathbb{N}, $$
$$ \left(cos(\theta) + i.sin(\theta)\right)^n = cos(n\theta) + i.sin(n\theta) $$

Then, we can now write that:

$$ z^n= |z|^n.\left(cos(n\theta) + i.sin(n\theta)\right) $$

Let us now apply the conjugate of it:

$$ \overline{z^n} \hspace{0.2em} = \overline{|z|^n}.\left(cos(n\theta) - i.sin(n\theta)\right) $$

Furthermore, we know from the property of the module of the conjugate that:

$$ \forall z \in \mathbb{C}, \enspace | z | = |\overline{z}| $$
$$ \overline{z^n} \hspace{0.2em} = |z|^n.\left(cos(n\theta) - i.sin(n\theta)\right) \qquad (7) $$

Let us now calculate \( (\overline{z})^n \) seperately, starting from \( \overline{z} \).

$$ \overline{z} \hspace{0.2em} = |z|.\left(cos(\theta) - i.sin(\theta)\right) $$

With the Moivre's formula again, we do have:

$$ (\overline{z})^n \hspace{0.2em} = |z|^n.\left(cos(n\theta) - i.sin(n\theta)\right) \qquad (8) $$

After having calculated both expressions \( (7) \) et \( (8) \), we notice that they are equals:

$$ \overline{z^n} \hspace{0.2em} = (\overline{z})^n = |z|^n.\left(cos(n\theta) - i.sin(n\theta)\right) $$

And as a result,

$$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{N},$$

$$ \overline{z^n} \hspace{0.2em} = \hspace{0.2em} (\overline{z})^n $$


Recap table of the properties of the complex numbers formulas

Return Index
Scroll top Go to the top of the page