Newton's binomial tells us that :
$$ (a + b)^n = \sum_{p = 0}^n \binom{n}{p} a^{n-p}b^p \qquad (Newton ) $$
We can use the Pascal's triangle to find binomials coefficients \(\binom{n}{p}\).
Let show by a recurrence that the statement \((S_n)\) is true:
$$ (a + b)^n = \sum_{p = 0}^n \binom{n}{p} a^{n-p}b^p \qquad (S_n) $$
Let verify if this is the case for the first term, that is to say when \( n = 0 \).
But,
We definitely have:
\((S_0)\) is true.
Let \( k \in \mathbb{N} \) be a natural number.
Let us assume that \((S_k)\) is true for all \( k \).
And let verify if it is also the case for \((S_{k + 1})\).
So that:
$$ (a + b)^{k + 1} = \binom{k + 1}{0}a^{k + 1} + \binom{k + 1}{1}a^{k}b + \binom{k + 1}{2}a^{k-1}b^2 \ + \ ... \ + \ \binom{k + 1}{k}ab^{k} + \binom{k + 1}{k + 1}b^{k + 1} \qquad (S_{k + 1}') $$
Multiplying \(( S_{k} ) \) by \(( a + b) \), we do have:
$$ (a + b)^{k + 1} = (a + b) \times \left[ \binom{k}{0}a^k + \binom{k}{1}a^{k - 1}b + \binom{k}{2}a^{k - 2}b^2 \ + \ ... \ + \ \binom{k}{k - 1}ab^{k -1} + \binom{k}{k} b^k \right] $$
$$ (a + b)^{k + 1} = \binom{k}{0} \left(a^{k + 1} + ba^k \right) + \binom{k}{1}\left(a^kb + a^{k - 1}b^2 \right) \ + \ ... \ + \ \binom{k}{k - 1}\left(a^2b^{k -1} + ab^k \right) + \binom{k}{k}\left(ab^k + b^{k + 1}\right) $$
$$ (a + b)^{k + 1} = \textcolor{#606B9E}{\binom{k}{0}} a^{k + 1} + \textcolor{#446e4f}{\left[\binom{k}{0} + \binom{k}{1} \right]} ba^k + \textcolor{#8E5B5B}{\left[\binom{k}{1} + \binom{k}{2} \right]} a^{k - 1}b^2 \ + \ ... \ + \ \textcolor{#7C578A}{\left[\binom{k}{k -1} + \binom{k}{k} \right]}ab^k + \textcolor{#606B9E}{\binom{k}{k}} b^{k +1} $$
But we know thanks to the Pascal's formula that :
And as well:
Consequently, thanks to \( (Pascal^*) \), we do have:
$$ (a + b)^{k + 1} = \textcolor{#606B9E}{\binom{k}{0}} a^{k + 1} + \textcolor{#446e4f}{\binom{k + 1}{1} } ba^k + \textcolor{#8E5B5B}{\binom{k + 1}{2}} a^{k - 1}b^2 \ + \ ... \ + \ \textcolor{#7C578A}{\binom{k + 1}{k}}ab^k + \textcolor{#606B9E}{\binom{k}{k }} b^{k +1} $$
Now, we notice that:
And:
And finally we do have:
$$ (a + b)^{k + 1} = \binom{k + 1}{0} a^{k + 1} + \binom{k + 1}{1} ba^k + \binom{k + 1}{2} a^{k - 1}b^2 \ + \ ... \ + \ \binom{k + 1}{k}ab^k + \binom{k + 1}{k + 1 } b^{k +1} $$
If we write it under another form, we do have the beginning statement \(( S_{k + 1} ) \):
Thus, \((S_{k + 1})\) is true.
The statement \((S_n)\) is true for its first terme \(n_0 = 0\) and it is hereditary from terms to terms for all \(k \in \mathbb{N}\).
By the recurrence principle, that statement is true for all \(n \in \mathbb{N}\).
Nous venons de prouver par une récurrence que :
$$ (a + b)^n = \sum_{p = 0}^n \binom{n}{p} a^{n-p}b^p \qquad (Newton ) $$