French flag Arrows English flag
Sun Arrows Moon
Return Index

The Moivre's formula

Let \( n \in \mathbb{Z}\) be an integer, and \( z \in \mathbb{C}\) be a complex number having as a module \( |z|= 1\) under its trigonometric form, such as:

$$ z = cos(\theta) + isin(\theta) $$

Moivre's formula tells us that:

$$ \forall \theta \in \hspace{0.05em} \mathbb{R}, \enspace n \in \mathbb{Z}, $$

$$ \Bigl[cos(\theta) + isin(\theta)\Bigr]^n = cos(n\theta) + isin(n\theta) \qquad (Moivre ) $$


Demonstration

Let \( n \in \mathbb{Z}\) be an integer, and \( z \in \mathbb{C}\) be a complex number having as a module \( |z|= 1\) under its trigonometric form, such as:

$$ z = cos(\theta) + isin(\theta) $$

  1. Using the argument of a complex number

  2. Raising both sides to the power of \(n\), we do have:

    $$ z^n = \Bigl[cos(\theta) + isin(\theta)\Bigr]^n $$

    We know from the property of the argument of a complex number raised to an integer power that:

    $$ \forall z \in \mathbb{C}, \enspace \forall n \in \mathbb{Z}, \enspace arg(z^n) = n . arg(z) $$

    So in our case that,

    $$ arg(z^n) = n . arg(z) $$
    $$ arg(z^n) = n \theta $$

    If the argument of the complex number \( z^n \) is \( n \theta \), then the latter can we written as:

    $$ z^n = cos(n\theta) + isin(n\theta) $$

    And finally,

    $$ \forall \theta \in \hspace{0.05em} \mathbb{R}, \enspace n \in \mathbb{Z}, $$

    $$ \Bigl[cos(\theta) + isin(\theta)\Bigr]^n = cos(n\theta) + isin(n\theta) \qquad (Moivre ) $$


  3. Using the exponential form of a complex number

  4. Using the exponential form of a complex number, we can directly notice that:

    $$ cos(\theta) + isin(\theta) = e^{i\theta} $$

    Now, raising both sides to the power of \(n\):

    $$ \Bigl[cos(\theta) + isin(\theta)\Bigr]^n = \bigl(e^{i\theta}\bigr)^n $$
    $$ \Bigl[cos(\theta) + isin(\theta)\Bigr]^n = e^{in\theta} $$

    And finally,

    $$ \forall \theta \in \hspace{0.05em} \mathbb{R}, \enspace n \in \mathbb{Z}, $$

    $$ \Bigl[cos(\theta) + isin(\theta)\Bigr]^n = cos(n\theta) + isin(n\theta) \qquad (Moivre ) $$

Return Index
Scroll top Go to the top of the page