French flag Arrows English flag
Sun Arrows Moon
Return Index

Integration methods for rational fractions

With a second degree denominateur only\(: {\displaystyle \int^x} \frac{1}{Q_2(t)} \ dt \)


$$ S_1(x) = \frac{1}{x^2 + px + q}$$

With a numerator of the first degree and a denominator of the second degree\(: {\displaystyle \int^x} \frac{P_1(t)}{Q_2(t)} \ dt \)

$$ S_2(x) = \frac{Ax + B}{x^2 + px + q}$$

$$ according \ to \ the \ result \ of \ (\Delta = p^2 - 4q) \enspace \left \{ \begin{align*} if \ \Delta > 0 \Longrightarrow \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \bigl\{x_1, x_2 \bigr\} \Bigr], \\ if \ \Delta = 0 \Longrightarrow \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \left\{ - \frac{p}{2} \right\} \biggr], \\ if \ \Delta < 0 \Longrightarrow \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \bigl\{x_1, x_2 \bigr\} \Bigr], \end{align*} \right \} $$

$$ \int^x \frac{At + B}{t^2 + pt + q} \ dt = \frac{A}{2}ln\left|x^2 + px + q\right| + \int^x \frac{B - \frac{Ap}{2}}{t^2 + pt + q} \ dt $$
$$ \left(with \ the \ integral \ \int^x \frac{B - \frac{Ap}{2}}{t^2 + pt + q} \ dt \enspace to \ determinate \ according \ to \ the \ discriminant \ \Delta = p^2 - 4q \right) $$

Integration methods and antiderivatives recap table


Demonstrations

Generally speaking, we will always try to reduce ourselves to a whole fraction with a remainder, rather than staying with a numerator of a higher degree than the denominator.

For example,

$$ R(x) = \frac{3x^2 + 2x + 1}{x+1}$$

After the Euclidian division of \((3x^2 + 2x + 1)\) by \((x+1)\) it remains:

$$ R(x) = \ \underbrace{ 3x^2 - 3x + 5 } _\text{partie entière} \ - \ \underbrace{ \frac{5}{x+1}} _\text{reste}$$

Which now allows us to easily integrate it:

$$ \int^x R(t) \ dt = \int^x \Bigl( 3t^2 - 3t + 5 \Bigr)\ dt - \int^x \frac{5}{t+1}\ dt $$
$$ \int^x R(t) \ dt = x^3 - \frac{3t^2}{2} + 5x -5ln\bigl|t+1\bigr|$$

Similarly, when we have a polynomial of type \(ax^2 + bx + c\), we will rather seek to obtain the form \(x^2 + px + q\), even if it means simplifying before integration before rehabilitating this factor later on.


With a second degree denominateur only\(: {\displaystyle \int^x} \frac{1}{Q_2(t)} \ dt \)

$$ S_1(x) = \frac{1}{x^2 + px + q}$$

With a numerator of the first degree and a denominator of the second degree\(: {\displaystyle \int^x} \frac{P_1(t)}{Q_2(t)} \ dt \)

$$ S_2(x) = \frac{Ax + B}{x^2 + px + q}$$

Given that the numerator is almost the derivative of the numerator, let's try to obtain a form like:

$$\int^x \frac{u'(t)}{u(t)} \ dt = ln\bigl|u(x)\bigr| $$

To do this, we will add a term and then immediately remove it:

$$ S_2(x) = \frac{Ax + \frac{Ap}{2} - \frac{Ap}{2} + B}{x^2 + px + q}$$

Consequently, we can factorize it by \(\frac{A}{2}\):

$$ S_2(x) = \frac{ \frac{A}{2} (2x + p) - \frac{Ap}{2} + B}{x^2 + px + q}$$
$$ S_2(x) = \frac{A}{2} \ \frac{2x + p}{x^2 + px + q} + \frac{B - \frac{Ap}{2}}{x^2 + px + q} $$
$$ \int^x S_2(t) = \frac{A}{2}\int^x \frac{2t + p}{t^2 + pt + q} + \int^x \frac{B - \frac{Ap}{2}}{t^2 + pt + q} \ dt $$

The first integral is then that of the desired form, and the second must be integrated according to the result of the discriminant \(\Delta\), as seen previously.

$$ \int^x S_2(t) = \frac{A}{2}ln\left|x^2 + px + q\right| + \int^x \frac{B - \frac{Ap}{2}}{t^2 + pt + q} \ dt $$

And finally,

$$\forall x \in \mathbb{R},$$

$$ according \ to \ the \ result \ of \ (\Delta = p^2 - 4q) \enspace \left \{ \begin{align*} if \ \Delta > 0 \Longrightarrow \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \bigl\{x_1, x_2 \bigr\} \Bigr], \\ if \ \Delta = 0 \Longrightarrow \forall x \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \left\{ - \frac{p}{2} \right\} \biggr], \\ if \ \Delta < 0 \Longrightarrow \forall x \in \Bigl[ \mathbb{R} \hspace{0.2em} \backslash \bigl\{x_1, x_2 \bigr\} \Bigr], \end{align*} \right \} $$

$$ \int^x \frac{At + B}{t^2 + pt + q} \ dt = \frac{A}{2}ln\left|x^2 + px + q\right| + \int^x \frac{B - \frac{Ap}{2}}{t^2 + pt + q} \ dt $$
$$ \left(with \ the \ integral \ \int^x \frac{B - \frac{Ap}{2}}{t^2 + pt + q} \ dt \enspace to \ determinate \ according \ to \ the \ discriminant \ \Delta = p^2 - 4q \right) $$

Integration methods and antiderivatives recap table


Integration examples

  1. Integration of a rational fraction with a second degree denominator examples\(: {\displaystyle \int^x} \frac{1}{Q_2(t)} \ dt \)

    1. Example 1: with a positive discriminant \((\Delta > 0)\)
    2. $$ D = \int^x \frac{dt}{2t^2 -4t + 1} $$

      We try to get back to a type of form \(\frac{1}{x^2 + px + q}\).

      $$ D = \frac{1}{2} \int^x \frac{dt}{t^2 -2t + \frac{1}{2}} $$

      Let's calculate the discriminant \(\Delta\).

      $$ \Delta = p^2 - 4q $$
      $$ \Delta = (-2)^2 - 4 \times \frac{1}{2} $$
      $$ \Delta = 4 - 2 = 2 $$

      We then have two solutions \((t_1, t_2)\).

      $$ \left \{ \begin{align*} t_1 = \frac{- p - \sqrt{p^2 - 4q}}{2}\\ t_2 = \frac{- p +\sqrt{p^2 - 4q}}{2} \end{align*} \right \} \Longleftrightarrow \left \{ t_1 = 1 - \frac{\sqrt{2}}{2}, \ t_2 = 1 + \frac{\sqrt{2}}{2} \right \}$$


      So, our integral can be written in factorized form:

      $$ D = \frac{1}{2} \int^x \frac{dt}{\left(t - 1 + \frac{\sqrt{2}}{2} \right) \left(t - 1 - \frac{\sqrt{2}}{2} \right) } $$

      Let us break it in simple elements:

      Let us set a function \(F(X) \) down:

      $$F(X) = \frac{1}{\left(X - 1 + \frac{\sqrt{2}}{2} \right) \left(X - 1 - \frac{\sqrt{2}}{2} \right) } \qquad (F(X))$$

      We are looking for two real numbers \( a \) and \(b\) such as:

      $$F(X) = \frac{a}{\left(X - 1 + \frac{\sqrt{2}}{2} \right)} + \frac{b}{\left(X - 1 - \frac{\sqrt{2}}{2} \right)}$$

      Performing \( \left(X = 2 - \frac{\sqrt{2}}{2}\right)\), we determine \( a \):

      $$ \underset{\left(X = 2 - \frac{\sqrt{2}}{2}\right)}{F(X)} \times \left(X - 1 + \frac{\sqrt{2}}{2} \right) = \frac{1}{\left(X - 1 - \frac{\sqrt{2}}{2} \right)}= a \Longrightarrow \left(a = -\frac{1}{\sqrt{2}} \right) $$

      Now, performing \( \left(X = 2 + \frac{\sqrt{2}}{2}\right)\), we determine \( b \):

      $$ \underset{\left(X = 2 + \frac{\sqrt{2}}{2}\right)}{F(X)} \times \left(X - 1 - \frac{\sqrt{2}}{2} \right) = \frac{1}{\left(X - 1 + \frac{\sqrt{2}}{2} \right)}= b \Longrightarrow \left(b = \frac{1}{\sqrt{2}} \right) $$

      In the end, this integral can be written in decomposed form:

      $$ D = \frac{1}{2} \int^x -\frac{1}{\sqrt{2}} \frac{1}{\left(t - 1 + \frac{\sqrt{2}}{2} \right) } \ dt + \frac{1}{2} \int^x \frac{1}{\sqrt{2}} \frac{1}{\left(t - 1 - \frac{\sqrt{2}}{2} \right) } \ dt $$

      We can now easily integrate it:

      $$ D = -\frac{1}{2\sqrt{2}} \Biggl[ ln \left| t - 1 + \frac{\sqrt{2}}{2} \right| \Biggr]^x + \frac{1}{2\sqrt{2}} \Biggl[ ln\left| t - 1 - \frac{\sqrt{2}}{2} \right| \Biggr]^x$$
      $$ D = \frac{1}{2\sqrt{2}} \times \left( ln\left| x - 1 - \frac{\sqrt{2}}{2} \right| - ln\left| x - 1 + \frac{\sqrt{2}}{2} \right| \right) $$
      $$ D = \frac{1}{2\sqrt{2}} \times ln\left| \frac{x - 1 - \frac{\sqrt{2}}{2}}{x - 1 + \frac{\sqrt{2}}{2}} \right| $$

    3. Exemple 2: with a nul discriminant \((\Delta = 0)\)
    4. $$ E = \int^x \frac{dt}{t^2 + 2t + 1} $$

      Let us calculate the discriminant \(\Delta\).

      $$ \Delta = p^2 - 4q $$
      $$ \Delta = 2^2 - 4 \times 1 $$
      $$ \Delta = 4 - 4 = 0 $$

      We then have a double solution \( t_0 \).

      $$t_0 = \frac{- 2}{2} = -1 $$

      Now, our integral can be written in factorized form:

      $$ E = \int^x \frac{dt}{(t+1)^2} $$

      At this stage, we can easily integrate and:

      $$ E = \Bigg[ -\frac{1}{t+1} \Biggr]^x $$
      $$ E = -\frac{1}{x+1} $$

    5. Example 3: with a negative discriminant \((\Delta < 0)\)
    6. $$ F = \int^x \frac{dt}{t^2 + t + 3} $$

      Let us calculate the discriminant \(\Delta\).

      $$ \Delta = p^2 - 4q $$
      $$ \Delta = 1^2 - 4 \times 3 $$
      $$ \Delta = 1 - 12 = -11 $$

      In this specific case, we will use the canonic form of the polynomial:

      $$ F = \int^x \frac{dt}{\left(t + \frac{1}{2} \right)^2 + \left(3 - \frac{1}{4} \right)} $$
      $$ F = \int^x \frac{dt}{\left(t + \frac{1}{2} \right)^2 + \frac{11}{4} } $$
      $$ F = \int^x \frac{dt}{\left(t + \frac{1}{2} \right)^2 + \sqrt{\frac{11}{4}}^2 } $$

      Now, the integral is a standard antiderivative:

      $$ F = \frac{1}{\sqrt{\frac{11}{4}}} \times arctan\left( \frac{t + \frac{1}{2}}{\sqrt{\frac{11}{4}}} \right) $$
      $$ F = \frac{\sqrt{4}}{\sqrt{11}} \times arctan\left( \frac{\sqrt{4}}{\sqrt{11}} \left(t + \frac{1}{2} \right) \right) $$

  2. Integration of a rational fraction with first degree numerator and second degree denominator example\(: {\displaystyle \int^x} \frac{P_1(t)}{Q_2(t)} \ dt \)

  3. $$ G = \int^x \frac{3x-5}{-2t^2 + 5t + 6} \ dt $$

    As well as before, we try to obtain a form of type \((x^2 + px + q)\) at the denominator.

    $$ G = -\frac{1}{2} \int^x \frac{3x-5}{t^2 -\frac{5}{2}t -3} \ dt $$

    We use the method seen above in the demonstration.

    $$ \frac{Ax + B}{x^2 + px + q} = \frac{\frac{A}{2} (2x) + \frac{Ap}{2} - \frac{Ap}{2} + B}{x^2 + px + q} $$
    $$ \frac{Ax + B}{x^2 + px + q} = \frac{\frac{A}{2} \left(2x + \frac{Ap}{2} \right) - \frac{Ap}{2} + B}{x^2 + px + q} $$

    That is to say, split the big quotient in two distincts quotients:

    $$ \frac{Ax + B}{x^2 + px + q} = \frac{A}{2}\frac{2x + p}{x^2 + px + q} + \frac{B - \frac{Ap}{2}}{x^2 + px + q} $$

    And use the following standard antiderivative:

    $$ \int^x \frac{u'}{u} \ du = ln |u|$$
    $$ G = -\frac{1}{2} \int^x \frac{\frac{3}{2} \times (2x) + \frac{3 \times \left(-\frac{5}{2}\right)}{2} - \frac{3 \times \left(-\frac{5}{2}\right)}{2} -5}{t^2 -\frac{5}{2}t -3} \ dt $$
    $$ G = -\frac{1}{2} \left( \int^x \frac{ \frac{3}{2} \left(2x -\frac{5}{2}\right) + \frac{15}{4} -5 }{t^2 -\frac{5}{2}t -3} \ dt \right) $$

    We can now split it in two differents quotients.

    $$ G = -\frac{1}{2} \left( \frac{3}{2} \int^x \frac{ \left(2x -\frac{5}{2}\right)}{t^2 -\frac{5}{2}t -3} \ dt + \int^x \frac{ \frac{15}{4} -5 }{t^2 -\frac{5}{2}t -3} \ dt \right) $$
    $$ G = -\frac{3}{4} \int^x \frac{ 2x -\frac{5}{2} }{t^2 -\frac{5}{2}t -3} \ dt \ - \ \frac{1}{2} \int^x \frac{\frac{15}{4} - 5}{t^2 -\frac{5}{2}t -3} \ dt $$
    $$ G = -\frac{3}{4} \Biggl[ ln \left| t^2 -\frac{5}{2}t -3 \right| \Biggr]^x \ + \ \frac{5}{8} \int^x \frac{1}{t^2 -\frac{5}{2}t -3} \ dt $$
    $$ G = -\frac{3}{4} ln \left| x^2 -\frac{5}{2}x -3 \right| \ + \ \frac{5}{8} G_2 $$

    We must now calculate the integral \(G_2\) using the previous methods. We first determine the discriminant \(\Delta\).

    $$\Delta = p^2 - 4q$$
    $$\Delta = \left(-\frac{5}{2}\right)^2 - 4 \times (-3)$$
    $$\Delta = \frac{25}{4} + 12$$
    $$\Delta = \frac{25}{4} + \frac{48}{4}$$
    $$\Delta = \frac{73}{4} $$

    We then have two solutions \((t_1, t_2)\).

    $$ \left \{ \begin{align*} t_1 = \frac{\frac{5}{2} - \sqrt{\frac{73}{4}}}{2}\\ t_2 = \frac{\frac{5}{2} + \sqrt{\frac{73}{4}}}{2}\end{align*} \right \} \Longleftrightarrow \left \{ t_1 = \frac{5 - \sqrt{73}}{4}, \ t_2 = \frac{5 +\sqrt{73}}{4} \right \}$$

    So, our integral \(G_2\) can be written in a factorized form:

    $$ G_2 = \frac{1}{2} \int^x \frac{dt}{\left(t - \left( \frac{5 - \sqrt{73}}{4} \right) \right) \left(t - \left( \frac{5 + \sqrt{73}}{4} \right) \right) } $$

    Let us decompose it in simple elements:

    Let us set the function \(F(X) \) down:

    $$F(X) = \frac{1}{\left(X - \left( \frac{5 - \sqrt{73}}{4} \right) \right) \left(X - \left( \frac{5 + \sqrt{73}}{4} \right) \right) } \qquad (F(X))$$

    We are looking for two real numbers \( \alpha \) and \(\beta\)such as:

    $$F(X) = \frac{\alpha}{\left(X - \left( \frac{5 - \sqrt{73}}{4} \right) \right)} + \frac{\beta}{ \left(X - \left( \frac{5 + \sqrt{73}}{4} \right) \right)}$$

    Performing \( \left(X = \frac{5 - \sqrt{73}}{4} \right) \), we determine \( \alpha \):

    $$ \underset{\left(X = \frac{5 - \sqrt{73}}{4} \right)}{F(X)} \times \left(X - \left( \frac{5 - \sqrt{73}}{4} \right) \right) = \frac{1}{\left(X - \left( \frac{5 + \sqrt{73}}{4} \right) \right)}= \alpha \Longrightarrow \left(\alpha = -\frac{2}{\sqrt{73}} \right) $$

    Now performing \( \left(X = \frac{5 + \sqrt{73}}{4} \right) \), we determine \( \beta \):

    $$ \underset{\left(X = \frac{5 + \sqrt{73}}{4} \right)}{F(X)} \times \left(X - \left( \frac{5 + \sqrt{73}}{4} \right) \right) = \frac{1}{\left(X - \left( \frac{5 - \sqrt{73}}{4} \right) \right)}= \beta \Longrightarrow \left(\beta = \frac{2}{\sqrt{73}} \right) $$

    In the end, this integral can be written in a decomposed form:

    $$ G_2 = -\frac{2}{\sqrt{73}} \int^x \frac{dt}{\left(t - \left( \frac{5 - \sqrt{73}}{4} \right) \right)} + \frac{2}{\sqrt{73}}\int^x \frac{dt}{ \left(t - \left( \frac{5 + \sqrt{73}}{4} \right) \right)} $$
    $$ G_2 = \frac{2}{\sqrt{73}} \left( \Biggl[ ln\left| t - \frac{5 + \sqrt{73}}{4} \right| - ln\left| t - \frac{5 - \sqrt{73}}{4} \right| \Biggr]^x \right) $$
    $$ G_2 = \frac{2}{\sqrt{73}} \ ln\left| \frac{x - \frac{5 + \sqrt{73}}{4}}{x - \frac{5 - \sqrt{73}}{4}} \right| $$
    $$ G_2 = \frac{2}{\sqrt{73}} \ ln\left| \frac{4x - (5 + \sqrt{73})}{4x - ( 5 - \sqrt{73})} \right| $$

    Finally, adding the previous result we obtain the final integral:

    $$ G = -\frac{3}{4} ln \left| x^2 -\frac{5}{2}x -3 \right| \ + \ \frac{5}{8} G_2 $$
    $$ G = -\frac{3}{4} ln \left| x^2 -\frac{5}{2}x -3 \right| \ + \ \frac{5}{8} \times \frac{2}{\sqrt{73}} \ ln\left| \frac{4x - (5 + \sqrt{73})}{4x - ( 5 - \sqrt{73})} \right| $$
    $$ G = -\frac{3}{4} \ ln \left| x^2 -\frac{5}{2}x -3 \right| \ + \ \frac{5}{4\sqrt{73}} \ ln\left| \frac{4x - (5 + \sqrt{73})}{4x - ( 5 - \sqrt{73})} \right| $$
Return Index
Scroll top Go to the top of the page