Euler's formula: exponential form of a complex number
$$ e^{ix} = cos(x) + i sin(x) \qquad (Euler's \enspace formula)$$
Euler's trigonometric formulas
$$ \Biggl \{ \begin{gather*} 2cos(px) = e^{ipx} + e^{-ipx} \\ 2i.sin(px) = e^{ipx} - e^{-ipx} \end{gather*} \qquad (Euler's \enspace trigonometric \ formulas) $$
Let \( z \in \mathbb{C}\) a complex number having as a module \( |z|= 1\) under its trigononmetric form such as:
We know that the Taylor series of \(e^x\) at \(0\) is:
Thus, if we develop a Taylor series of \(e^{ix}\) at \(0\), we do have:
Now, we notice two known Taylor series, those of the \(cos(x)\) and \(sin(x)\) functions:
$$ e^{ix} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}\hspace{0.1em} \hspace{0.1em} - \hspace{0.1em} ... \hspace{0.1em} + \hspace{0.1em} (-1)^{n} \frac{x^{2n}}{(2n)!} + o \bigl(x^{2n+1}\bigr) \hspace{0.1em} + ix - i \frac{x^3}{3!} +i \frac{x^5}{5!} - \hspace{0.1em} ... \hspace{0.1em} + i(-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o \bigl(x^{2n+2}\bigr) $$
$$ e^{ix} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}\hspace{0.1em} \hspace{0.1em} - \hspace{0.1em} ... \hspace{0.1em} + \hspace{0.1em} (-1)^{n} \frac{x^{2n}}{(2n)!} +o \bigl(x^{2n+1}\bigr) \hspace{0.1em} + i \Biggl(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \hspace{0.1em} ... \hspace{0.1em} + \hspace{0.1em} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o \bigl(x^{2n+2}\bigr)\Biggr) $$
Assuming that all the remainder are tending towards \( 0 \) when \( n \to \infty \):
Thus, the complex number \( z \) having as a module \( |z|= 1\) can be written under its exponential form:
And finally,
$$ e^{ix} = cos(x) + i sin(x) \qquad (Euler's \enspace formula) $$
Now, whatever complex number \( z \) will be written as:
Be careful not to get mixed up with the "\( x \)" of \( e^{ix} \) of the Euler's formula with the one in a complex number written\( z = x + iy \). In the Euler's formula, le "\( x \)" represents an angle, or even the argument of a complex.
Let \( z \in \mathbb{C}\) be a complex number having as a module under its trigonometric form, and its conjugate \( \overline{z} \) such as:
$$ \Biggl \{ \begin{gather*} z = cos(\theta) + isin(\theta) \\ \overline{z} = cos(\theta) - isin(\theta) \end{gather*} $$
With the exponential form of the complex numbers seen above, we can rewrite this two expressions as:
$$ \Biggl \{ \begin{gather*} z = e^{i\theta} \\ \overline{z} = e^{-i\theta} \end{gather*} \qquad \Bigl(with \ \overline{z} = cos(\theta) - isin(\theta) \hspace{0.2em} \Longleftrightarrow \hspace{0.2em} \overline{z} = cos(-\theta) + isin(-\theta) \Bigr) $$
Raising those two expressions at the power of \(p\):
$$ \Biggl \{ \begin{gather*} z^p = \bigl(e^{i\theta}\bigr)^p = e^{ip\theta} = cos(p\theta) + isin(p\theta) \\ (\overline{z})^p = \bigl(e^{-i\theta}\bigr)^p = e^{-ip\theta} = cos(p\theta) - isin(p\theta) \end{gather*} $$
$$ \Biggl \{ \begin{gather*} e^{ip\theta}= cos(p\theta) + isin(p\theta) \qquad (1) \\ e^{-ip\theta} = cos(p\theta) - isin(p\theta) \qquad (2) \end{gather*} $$
Now, performing the operation \( (1) + (2) \), we do have:
Moreover, performing the operation \( (1) - (2) \):
As a result we obtain that,
$$ \Biggl \{ \begin{gather*} 2cos(px) = e^{ipx} + e^{-ipx} \\ 2i.sin(px) = e^{ipx} - e^{-ipx} \end{gather*} \qquad (Euler's \enspace trigonometric \ formulas) $$
Mainly in the frame of integration, it can be useful to work with simplified forms of trigonometric functions.
If we want to linearize \(cos^3(x) \), we do have:
But, we know from the Newton's binomial that:
Hence,
Injecting now our initial expression:
And finally,
If we want to transform the product \(cos(px)sin(qx) \) into a sum, we do have:
Rearraging the whole expression, we obtain:
And as a result,