French flag Arrows English flag
Sun Arrows Moon
Return Index

The derivatives of operations on functions

Let be by default two functions \( f, g \), depending on \( x \) such as:

$$ \Biggl \{ \begin{align*} \forall x \in D_f, \enspace f: x \longmapsto f(x) \\ \forall x \in D_g, \enspace g: x \longmapsto g(x) \end{align*} $$


Function multiplied by a constant\(: (\lambda f )' \)

When we derive a function mutliplied by a constant \(\lambda \in \mathbb{R}\), we can take it out and derive the function separately.

$$ \forall f, \ \forall \lambda \in \mathbb{R},$$

$$ (\lambda f)' = \lambda f' $$


Sum of two functions\(: (f+g )' \)

$$ \forall (f,g),$$

$$ \bigl( f + g \bigr)' = f' + g' $$

In the same way,

$$ \forall (f,g),$$

$$ \bigl( f \textcolor{#8E5B5B}{-} g \bigr)' = f' \textcolor{#8E5B5B}{-} g' $$


Linear combination of two functions\(: (\lambda f+ \mu g )' \)

$$ \forall (f,g), \ \forall (\lambda, \mu) \in \hspace{0.05em} \mathbb{R}^2 $$

$$ (\lambda f+ \mu g )' = \lambda f'+ \mu g' $$

The derivative of a linear combination is the linear combination of each derivative function.


  1. Generalization
  2. $$ \forall n \in \mathbb{N}, \enspace \forall (f,g), \enspace \forall k \in [\![ 1, n ]\!], \enspace \forall \lambda_k \in \hspace{0.05em} \mathbb{R}^n,$$

    $$ \Biggl( \sum_{k=0}^n \lambda_k f_k \Biggl)' = \sum_{k=0}^n \lambda_k f'_k $$


Product of two functions\(: (fg )' \)

  1. Simple derivation
  2. $$ \forall (f,g),$$

    $$ \left ( f g \right)' = f'g + g'f $$


  3. Multiple derivation: the Leibniz's formula
  4. Let be \(f, g\) two functions of class \( \mathbb{C}^{\infty}\) on an interval \(I\). We note \(f^{(n)}\) the \(n\)-th derivative of \(f\).


    The Leibniz's formula tells us that::

    $$ \forall n\in \hspace{0.05em} \mathbb{N}, \enspace \forall (f,g), $$

    $$ (fg)^{(n)} = \sum_{p = 0}^n \binom{n}{p} f^{(n-p)} \hspace{0.1em} g^{(p)} \qquad (Leibniz ) $$


Inverse of a function\(: (1 / g )' \)

$$ \forall g \neq 0, $$

$$ \left ( 1 \over g \right)' = \frac{g'}{g^2} $$


Quotient of two functions\(: (f / g )' \)

$$ \forall (f,g), \ g \neq 0, $$

$$ \left ( f \over g \right)' = \frac{f'g - g'f}{g^2} $$


Composite functions\(: (f \circ g )' \)

  1. Two-functions composite
  2. Let be \( f, g \) two functions.

    $$ g : I \longmapsto J , \enspace x \longmapsto g(x) $$
    $$ f : J \longmapsto K, \enspace y = g(x) \longmapsto f(y) = f \left(g(x)\right) $$

    We define a composite function \( (f \circ g) \) as:

    $$ (f \circ g)(x) = f \left(g(x)\right) $$

    Its derivative is:

    $$ \forall (f,g),$$

    $$ (f \circ g)' = g'(f' \circ g) $$

    So:

    $$ (f \circ g)' = g'.f' \left(g\right) $$

    We also call it a chain derivation.


  3. Generalization: any composite function
  4. Let us define a new operator of composition:

    $$ \forall n \in \mathbb{N}, \ \Biggl( \overset{n}{\underset{k=1}{\bigcirc f_k}} \ \Biggr )(x) = \Bigl(f_1 \circ f_2 \circ f_3 \circ \ ... \ \circ f_{n-1} \circ f_{n}\Bigr)(x) $$

    We now define a new function \(\Psi_n (x) \):

    $$ \forall n \in \mathbb{N}, \ \Psi_n (x) = \ \Biggl( \overset{n}{\underset{k=1}{\bigcirc f_k}} \ \Biggr ) (x) $$

    Thus we can model it as,

    $$ \forall n \in \mathbb{N}, \ \forall k \in [\![1, n ]\!], \ \forall f_k \in \hspace{0.05em} f^k,$$

    $$ \Psi_n' = f'_n \times \prod_{k=1}^{n-1}\Biggl[ f'_{n-k} \circ \Biggl( \overset{n}{\underset{j= (n - k) + 1}{\bigcirc f_j}} \ \Biggr ) \Biggr] \\ $$

    $$ with \enspace \Psi_n (x) = \Biggl( \overset{n}{\underset{k=1}{\bigcirc f_k}} \ \Biggr ) (x) = \Bigl(f_1 \circ f_2 \circ f_3 \circ \ ... \ \circ f_{n-1} \circ f_{n}\Bigr)(x) $$

    And under its developped form,

    $$ \forall n \in \mathbb{N}, \ \forall k \in [\![1, n ]\!], \ \forall f_k \in \hspace{0.05em} f^k,$$

    $$ \Psi_n' = \Biggl( \overset{n}{\underset{k=1}{\bigcirc f_k}} \ \Biggr )'= f_n' \times \bigl( f_{n-1}' \circ f_n \bigr) \times \ ... \ \times \bigl(f_1' \circ f_2 \circ \ ... \ \circ f_{n-1} \circ f_n \bigr)$$


Recap table of the derivatives of composite functions

Click on the title to access to the recap table.


Reciprocal function\(: (f^{-1} )' \)

Let be \( f \) a function such as:

$$ f : I \longmapsto f(I) = J , \enspace x \longmapsto f(x) $$

We define its reciprocal function by:

$$ f^{-1} : J \longmapsto I , \enspace f(x) \longmapsto x $$

The reciprocal function derivative \( (f^{-1})' \) is:

$$ \forall (f,f^{-1}), \enspace (f' \circ f^{-1}) \neq 0, $$

$$ ( f^{-1} )' = \frac{1}{ (f' \circ f^{-1})} $$


Recap table of the derivatives of operations on functions

Click on the title to access to the recap table.


Demonstrations


Function multiplied by a constant\(: (\lambda f )' \)

Let be \( \lambda \in \mathbb{R} \) a real number.


With the definition of the derivative, we do have:

$$ (\lambda f)' = lim_{h \to 0 } \enspace \frac{\lambda f(x+h) - \lambda f(x)}{h} $$

We can factorize it by \( \lambda \):

$$ (\lambda f)' = lim_{h \to 0 } \enspace \lambda\frac{ f(x+h) - f(x)}{h} $$

But, we know from the formulas of limits that:

$$ lim (\lambda f) = \lambda lim (f)$$

So:

$$ \forall f, \ \forall \lambda \in \mathbb{R},$$

$$ (\lambda f)' = \lambda f'$$


Sum of two functions\(: (f+g )' \)

  1. Using the limit of the variation rate

  2. With the definition of the derivative, we do have:

    $$ ( f+ g)'(x) = lim_{h \to 0 } \enspace \frac{ f(x+h) + g(x+h) - (f(x) + g(x))}{h} $$
    $$ ( f+ g)'(x) = lim_{h \to 0 } \enspace \frac{ f(x+h) + g(x+h) - f(x) - g(x)}{h} $$

    The limit of a sum being the sum of both limits:

    $$ lim (f+g) = lim (f) + lim (g) $$
    $$ ( f+ g)'(x) = lim_{h \to 0 } \enspace \frac{ f(x+h) - f(x)}{h} + lim_{h \to 0 } \enspace \frac{g(x+h) - g(x)}{h} $$

    $$ \forall (f,g),$$

    $$ \bigl( f + g \bigr)' = f' + g'$$


    In the same way, a difference being a sum of negative number, it follows that:

    $$ \bigl( f \textcolor{#8E5B5B}{-} g \bigr)' = f' \textcolor{#8E5B5B}{-} g' $$


  3. Using partial derivatives

  4. Considering \( y \) as a function depending on two variables \(f \) and \( g \):

    $$y = f + g$$

    We thus have a partial derivative:

    $$ dy = \frac{\partial y}{\partial f} df + \frac{\partial y}{\partial g}dg $$
    $$ dy = df + dg $$

    And then derivating now in relation to \(x \):

    $$ \frac{dy}{dx} = \frac{df}{dx} + \frac{df}{dx} $$

    As a result we do have,

    $$ \forall (f,g),$$

    $$ \bigl( f + g \bigr)' = f' + g'$$


Linear combinations of two functions\(: (\lambda f+ \mu g )' \)

With the derivative of a sum function,

$$ (\lambda f+ \mu g )' = (\lambda f)'+ (\mu g)' $$

Finally, with the derivative of a function multiplied by a constant \( \lambda \), we can directly conclude that:

$$ \forall (f,g), \ \forall (\lambda, \mu) \in \hspace{0.05em} \mathbb{R}^2, $$

$$ (\lambda f+ \mu g )' = \lambda f'+ \mu g' $$


  1. Generalization
  2. As well, repeating this operation multiple times, we can establish that:

    $$ \forall n \in \mathbb{N}, \enspace \forall (f,g), \enspace \forall k \in [\![ 1, n ]\!], \enspace \forall \lambda_k \in \hspace{0.05em} \mathbb{R}^n,$$

    $$ \Biggl( \sum_{k=0}^n \lambda_k f_k \Biggl)' = \sum_{k=0}^n \lambda_k f'_k $$


Product of two functions\(: (fg )' \)

  1. Simple derivation

    1. Using the limit of the variation rate
    2. With the definition of the derivative, we do have:

      $$ \left ( fg \right)'(x) = lim_{h \to 0 } \enspace \frac{ f(x+h)g(x+h) - fg}{h} $$

      Let us add the term \( f(x + h)g(x) \), then let us remove it straight away, to preserve the integrity of our initial equation:

      $$ \left ( fg \right)'(x) = lim_{h \to 0 } \enspace \frac{ f(x+h)g(x+h) + f(x + h)g(x) - f(x + h)g(x) - fg}{h} $$

      We now factorize it by \( f(x + h) \) and by \( g(x) \):

      $$ \left ( fg \right)'(x) = lim_{h \to 0 } \enspace \frac{ g(x)(f(x + h) - f(x))}{h} \ + \ lim_{h \to 0 } \enspace \frac{ f(x+h)(g(x+h) - g(x))}{h} $$

      The limit of a product being the limit of the product, we now have:

      The limit of a product being the limit of the product:

      $$ lim (fg) = lim (f) \ lim(g)$$

      We now have this:

      $$ \left ( fg \right)'(x) = lim_{h \to 0 } \enspace g(x) . \left( lim_{h \to 0 } \enspace \frac{ f(x+h) - f(x)}{h} \right) \ + \ lim_{h \to 0 } \enspace f(x+h) \left( lim_{h \to 0 } \enspace \frac{ g(x+h) - g(x)}{h} \right) $$


      And finally,

      $$ \forall (f,g),$$

      $$ \left ( f g\right)' = f'g + g'f $$


    3. Using partial derivatives
    4. Considering \( y \) as a function depending on two variables \(f \) and \( g \):

      $$y = fg$$

      We thus have a partial derivative:

      $$ dy = \frac{\partial y}{\partial f} df + \frac{\partial y}{\partial g}dg $$
      $$ dy = g \ df + f \ dg $$

      And then derivating now in relation to \(x \):

      $$ \frac{dy}{dx} = g \ \frac{df}{dx} + f \frac{dg}{dx} $$

      As a result,

      $$ \forall (f,g),$$

      $$ \left ( f g\right)' = f'g + g'f $$


  2. Multiple derivation: the Leibniz's formula

  3. Let be \(f, g\) two functions of class \( \mathbb{C}^{\infty}\) on an interval \(I\). We note \(f^{(n)}\) the \(n\)-th derivative of \(f\).

    We know that the derivative of the product of functions is worth:

    $$ \forall (f,g),$$
    $$ \left ( f g \right)' \hspace{0.1em }= f'g + g'f $$

    Moreover, if we derivate it again,

    $$ \left ( f g \right)'' \hspace{0.1em } = (f'g)'+ (g'f)' $$
    $$ \left ( f g \right)'' \hspace{0.1em } = f''g + g'f' + f'g' + g''f $$
    $$ \left ( f g \right)'' \hspace{0.1em } = f''g + 2g'f' + g''f $$

    A pattern similar to the Newton's binomial appears in this equation.

    Indeed, this can make us think of:

    $$ \Biggl \{ \begin{align*} \left ( f g \right)^{(2)} \hspace{0.1em } = f^{(2)}g + 2g'f' + g^{(2)}f \qquad \\ (a+b)^2 = a^2 + 2ab + b^2 \qquad (Newton's \ binomial) \end {align*} $$

    Let us derivate it another time,

    $$ \left ( f g \right)^{(3)} \hspace{0.1em }= f^{(3)}g + g'f^{(2)} + 2 (g'f^{(2)} + f'g^{(2)}) + g^{(3)}f + f'g^{(2)} $$
    $$ \left ( f g \right)^{(3)} \hspace{0.1em }= f^{(3)}g + 3f^{(2)}g' + 3f'g^{(2)} + g^{(3)}f $$

    It seems that the successive derivations of the product give:

    $$ (fg)^{(n)} = \sum_{p = 0}^n \binom{n}{p} f^{n-p} \hspace{0.1em} g^p $$

    Let us try to demonstrate this by recurrence.


    1. Proof by recurrence
    2. Let us try to show that the following statement \((S_n)\) is true:

      $$ \forall n \in \hspace{0.05em} \mathbb{N}, \enspace (fg)^{(n)} = \sum_{p = 0}^n \binom{n}{p} f^{(n-p)} \hspace{0.1em} g^{(p)} \qquad (S_n) $$

      That is to say for all \(k\):

      $$ (fg)^{(k)} = \binom{k}{0} f^{(k)} \hspace{0.1em} g^{(0)} + \binom{k}{1} f^{(k-1)} \hspace{0.1em} g^{(1)} + \binom{k}{2} f^{(k-2)} \hspace{0.1em} g^{(2)} \enspace + ... + \enspace \binom{k}{k-1} f^{(1)} \hspace{0.1em} g^{(k-1)} + \binom{k}{k} f^{(0)} \hspace{0.1em} g^{(k)} \qquad (S_{k}) $$

      1. Calculation of the first term
      2. Let verify if this is the case for the first term, that is to say when \( n = 0 \).

        $$ \sum_{p = 0}^n \binom{n}{p} f^{(n-p)} \hspace{0.1em} g^{(p)} = \binom{n}{0} f^{(0)}g^{(0)} = fg $$

        It is just the product \((fg)\) before the derivation.

        Thus, \((S_0)\) is true.


      3. Heredity
      4. Let \( k \in \mathbb{N} \) be natural number.

        Let us assume that \((S_k)\) is true for all \( k \).

        $$ (fg)^{(k)} = \sum_{p = 0}^{k} \binom{k}{p} f^{(k-p)} \hspace{0.1em} g^{(p)} \qquad (S_{k}) $$

        And let verify if it is also the case for \((S_{k + 1})\).

        $$ (fg)^{(k+1)} = \sum_{p = 0}^{k+1} \binom{k+1}{p} f^{(k+1-p)} \hspace{0.1em} g^{(p)} \qquad (S_{k+1}) $$

        So that:

        $$ (fg)^{(k+1)} = \binom{k+1}{0} f^{(k+1)} \hspace{0.1em} g^{(0)} + \binom{k+1}{1} f^{(k-1)} \hspace{0.1em} g^{(1)} + \binom{k+1}{2} f^{(k-1)} \hspace{0.1em} g^{(2)} \enspace + ... + \enspace \binom{k+1}{k} f^{(1)} \hspace{0.1em} g^{(k)} + \binom{k+1}{k+1} f^{(0)} \hspace{0.1em} g^{(k+1)} \qquad (S_{k+1}) $$


        Let start from the expression \((fg)^{(k)}\) and calculate its derivative.

        $$ (fg)^{(k)} = \binom{k}{0} f^{(k)} \hspace{0.1em} g^{(0)} + \binom{k}{1} f^{(k-1)} \hspace{0.1em} g^{(1)} \enspace + ... + \enspace \binom{k}{k-1} f^{(1)} \hspace{0.1em} g^{(k-1)} + \binom{k}{k} f^{(0)} \hspace{0.1em} g^{(k)} \qquad (S_{k}) $$

        $$ \left ( (fg)^{(k)} \right)' = \binom{k}{0} \left ( f^{(k+1)} \hspace{0.1em} g^{(0)} + f^{(k)} \hspace{0.1em} g^{(1)} \right) + \binom{k}{1} \left (f^{(k)} \hspace{0.1em} g^{(1)} + g^{(2)} f^{(k -1 )} \right) \enspace + ... + \enspace \binom{k}{k-1} \left( f^{(2)} \hspace{0.1em} g^{(k-1)} + g^{(k)}f^{(1)} \right) + \binom{k}{k}\left( f^{(1)} g^{(k)} + g^{(k+1)}f^{(0)} \right) $$

        $$ (fg)^{(k+1)} = \textcolor{#606B9E}{\binom{k}{0}} \left ( f^{(k+1)} \hspace{0.1em} g^{(0)} \right) + \textcolor{#446e4f}{\left[\binom{k}{0} + \binom{k}{1}\right]} \left (f^{(k)} \hspace{0.1em} g^{(1)} \right) + \textcolor{#8E5B5B}{\left[\binom{k}{1} + \binom{k}{2}\right]} \left (f^{(k -1 )} g^{(2)} \right) \enspace + ... + \enspace \textcolor{#7C578A}{\left[\binom{k}{k-1} + \binom{k}{k}\right]} \left (f^{(1)} \hspace{0.1em} g^{(k)} \right) + \textcolor{#606B9E}{\binom{k}{k}} \left ( f^{(0)} \hspace{0.1em} g^{(k+1)} \right) $$

        But we know thanks to the Pascal's formula, that:

        $$ \binom{n}{p} = \binom{n - 1}{p - 1} + \binom{n - 1}{p} \qquad (Pascal) $$

        And therefore:

        $$ \binom{n + 1}{p + 1} = \binom{n}{p} + \binom{n}{p + 1} \qquad (Pascal^*) $$

        So, thanks to \( (Pascal^*) \), we do have now:

        $$ (fg)^{(k+1)} = \textcolor{#606B9E}{\binom{k}{0}} \left ( f^{(k+1)} \hspace{0.1em} g^{(0)} \right) + \textcolor{#446e4f}{\binom{k+1}{1}} \left (f^{(k)} \hspace{0.1em} g^{(1)} \right) + \enspace + ... + \enspace \textcolor{#7C578A}{\binom{k+1}{k}} \left (f^{(1)} \hspace{0.1em} g^{(k)} \right) + \textcolor{#606B9E}{\binom{k}{k}} \left ( f^{(0)} \hspace{0.1em} g^{(k+1)} \right) $$

        However, we notice that:

        $$ \binom{k}{0} = \binom{k + 1}{0} $$

        As well as,

        $$ \binom{k}{k} = \binom{k + 1}{k + 1} $$

        And at the end that:

        $$ (fg)^{(k+1)} = \binom{k+1}{0} \left ( f^{(k+1)} \hspace{0.1em} g^{(0)} \right) + \binom{k+1}{1} \left (f^{(k)} \hspace{0.1em} g^{(1)} \right) \enspace + ... + \enspace \binom{k+1}{k} \left (f^{(1)} \hspace{0.1em} g^{(k)} \right) + \binom{k+1}{k+1} \left ( f^{(0)} \hspace{0.1em} g^{(k+1)} \right) $$

        We can rewrite this term in the form of sum, and we find our statement \(( S_{k + 1} ) \):

        $$ (fg)^{(k+1)} = \sum_{p = 0}^{k+1} \binom{k+1}{p} f^{(k+1-p)} \hspace{0.1em} g^{(p)} \qquad (S_{k+1}) $$

        Thus, \((S_{k + 1})\) is true.


      5. Conclusion
      6. The statement \((S_n)\) is true for its first terme \(n_0 = 0\) and it is hereditary from terms to terms for all \(k \in \mathbb{N}\).

        By the recurrence principle, that statement is true for all \(n \in \mathbb{N}\).


    And finally,

    $$ \forall n\in \hspace{0.05em} \mathbb{N}, \enspace \forall (f,g), $$

    $$ (fg)^{(n)} = \sum_{p = 0}^n \binom{n}{p} f^{(n-p)} \hspace{0.1em} g^{(p)} \qquad (Leibniz ) $$


Inverse of a function\(: (1 /g )' \)

Let \(g \neq 0\) be a non-zero function.

  1. Using the limit of the variation rate

  2. With the definition of the derivative, we do have:

    $$ \left ( 1 \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{ \frac{1}{g(x+h)} - \frac{1}{g(x)} }{h} $$

    Let put the numerator in a common denominator:

    $$ \left ( 1 \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{1}{h} . \frac{ g(x) - g(x +h) }{g(x +h)g(x)} $$
    $$ \left ( 1 \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{g(x) - g(x +h)}{h} . \frac{ 1 }{g(x +h)g(x)} $$

    We now recognize the definition of the derivative of \(g \):

    $$ \left ( 1 \over g \right)'(x) = lim_{h \to 0 } \enspace - \frac{g(x +h)- g(x) }{h} . \frac{ 1 }{g(x +h)g(x)} $$
    $$ \left ( 1 \over g \right)'(x) = - g'(x) . \frac{ 1 }{g(x)^2} $$

    And finally,

    $$ \forall g \neq 0, $$

    $$ \left ( 1 \over g \right)' = -\frac{ g' }{g^2}$$


  3. Using the Leigniz notation

  4. Considering the function \( y\) cas a function depending on the variable \(g \):

    $$y = \frac{1}{g}$$
    $$ dy = -\frac{1}{g^2} dg $$

    So now derivating in relation to \(x \):

    $$ \frac{dy}{dx} = -\frac{1}{g^2} \Biggl[ \frac{dg}{dx} \Biggr]$$

    As a result,

    $$ \forall g \neq 0, $$

    $$ \left ( 1 \over g \right)' = -\frac{ g' }{g^2}$$


Quotient of two functions\(: (f / g )' \)

Let \(f\) be a function and \(g \neq 0\) a non-zero function.

  1. Using the limit of the variation rate

  2. With the definition of the derivative, we do have:

    $$ \left ( f \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{ \frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)} }{h} $$

    Let put the numerator in a common denominator:

    $$ \left ( f \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{ f(x+h)g(x) - f(x)g(x+h) }{h.g(x).g(x+h)} $$

    Let us add the term \( f(x)g(x) \), then let us remove it afterwards, in order to preserve our equation's integrity:

    $$ \left ( f \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{ f(x+h)g(x) - f(x)g(x+h) + f(x)g(x) - f(x)g(x)}{h.g(x).g(x+h)} $$

    We no factorize it by \( f(x) \) and by \( g(x) \):

    $$ \left ( f \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{ g(x).\Bigl[f(x+h) - f(x)\Bigr] - f(x)\Bigl[g(x + h) - g(x)\Bigr]}{h.g(x).g(x+h)} $$

    At this stage, let us seperate the expression in two parts:

    $$ \left ( f \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{1}{g(x).g(x+h)} \enspace . \biggl[ lim_{h \to 0 } \enspace \biggl( \frac{ g(x).\left(f(x+h) - f(x)\right)}{h} - \frac{ f(x)\left(g(x + h) - g(x)\right)}{h} \biggr) \Biggr] $$

    The limit of a difference being the difference of the limit :

    $$ lim (f-g) = lim (f)-lim (g) $$

    In the expression under brackets we obtain that:

    $$ \left ( f \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{1}{g(x).g(x+h)} \enspace . \biggl[ lim_{h \to 0 } \enspace \frac{ g(x).\left(f(x+h) - f(x)\right)}{h} - lim_{h \to 0 } \enspace \frac{f(x)\left(g(x + h) - g(x)\right)}{h} \Biggr] $$

    As well, the limit of a product is the product of both limits:

    $$ lim (fg) = lim (f) \ lim (g) $$

    $$ \left ( f \over g \right)'(x) = lim_{h \to 0 } \enspace \frac{1}{g(x).g(x+h)} \enspace . \biggl[ \Bigl( lim_{h \to 0 } \enspace g(x) \Bigr). lim_{h \to 0 } \enspace \Biggl( \frac{ f(x+h) - f(x)}{h}\Biggr) - \Bigl( lim_{h \to 0 } \enspace f(x) \Bigr).lim_{h \to 0 } \enspace \Biggl( \frac{g(x + h) - g(x)}{h} \Biggr) \Biggr] $$

    And in the end, applying this limit, we get this:

    $$ \left ( f \over g \right)'(x) = \frac{1}{g(x)^2} \enspace . \biggl( g(x).f'(x) - f(x).g'(x) \biggr) $$

    And finally,

    $$ \forall (f,g), \ g \neq 0, $$

    $$ \left ( f \over g \right)' = \frac{f'g - g'f}{g^2} $$

  3. Using partial derivatives

  4. Considering \( y \) as a function depending on two variables \(f \) and \( g \):

    $$y = \frac{f}{g}$$

    We thus have a partial derivative:

    $$ dy = \frac{\partial y}{\partial f} df + \frac{\partial y}{\partial g}dg $$
    $$ dy = \frac{1}{g} df - \frac{f}{g^2}dg $$

    Putting both terms on the same denominator, we do have:

    $$ dy = \frac{g}{g^2} df - \frac{f}{g^2}dg $$
    $$ dy = \frac{g.df - f.dg}{g^2} $$

    So now derivating in relation to \(x \):

    $$ \frac{dy}{dx} = \frac{1}{g^2} \left( g \frac{df}{dx} - f \frac{dg}{dx} \right ) $$

    And finally,

    $$ \forall (f,g), \ g \neq 0, $$

    $$ \left ( f \over g \right)' = \frac{f'g - g'f}{g^2} $$


Composite functions\(: (f \circ g )' \)

  1. Two-functions composite

  2. Let be \( f, g \) two functions.

    $$ g : I \longmapsto J , \enspace x \longmapsto g(x) $$
    $$ f : J \longmapsto K, \enspace y = g(x) \longmapsto f(y) = f \left(g(x)\right) $$

    We define a composite function \( (f \circ g) \) as:

    $$ (f \circ g)(x) = f \left(g(x)\right) $$

    With the definition of the derivative, we do have:

    $$ (f \circ g)'(x) = lim_{h \to 0 } \enspace \frac{(f \circ g)(x + h) - (f \circ g)(x)}{h} $$
    $$ (f \circ g)'(x) = lim_{h \to 0 } \enspace \frac{f\bigl(g(x + h) \bigr)- f\bigl(g(x)\bigr)}{h} $$

    Let us multiply by a quotient which is worth \(1\), keeping our equation true:

    $$ (f \circ g)'(x) = lim_{h \to 0 } \enspace \frac{f\bigl(g(x + h) \bigr)- f\bigl(g(x)\bigr)}{h} . \frac{g(x+ h) - g(x)}{g(x+ h) - g(x)} $$
    $$ (f \circ g)'(x) = lim_{h \to 0 } \enspace \frac{f\bigl(g(x + h) \bigr)- f\bigl(g(x)\bigr)}{g(x+ h) - g(x)} . \frac{g(x+ h) - g(x)}{h} $$

    The limit of a product being the product of both limits:

    $$ lim (fg) = lim (f) \ lim (g) $$

    We can now write:

    $$ (f \circ g)'(x) = lim_{h \to 0 } \enspace \frac{f(g(x + h))- f\bigl(g(x)\bigr)}{g(x+ h) - g(x)} . lim_{h \to 0 } \enspace \frac{g(x+ h) - g(x)}{h} $$

    Let set down a variable change such as:

    $$ g(x + h) - g(x) = H $$

    When \( h \to 0 \), then \( H \to 0 \).

    Moreover, we consider as an hypothesis that:

    $$ g(x) = y $$

    So,

    $$ (f \circ g)'(x) = lim_{H \to 0 } \enspace \frac{f(y + H) - f(y)}{H} . lim_{h \to 0 } \enspace \frac{g(x+ h) - g(x)}{h} $$
    $$ (f \circ g)'(x) = f' \left(y\right) . g'(x) $$
    $$ (f \circ g)'(x) = f' \bigl(g(x)\bigr) . g'(x) $$

    And as a result,

    $$ \forall (f,g),$$

    $$ (f \circ g)' = g'(f' \circ g) $$

    We also call it a chain derivation.


  3. Generalization: any composite function

  4. Let us define a new operator of composition:

    $$ \forall n \in \mathbb{N}, \ \Biggl( \overset{n}{\underset{k=1}{\bigcirc f_k}} \ \Biggr )(x) = \Bigl(f_1 \circ f_2 \circ f_3 \circ \ ... \ \circ f_{n-1} \circ f_{n}\Bigr)(x) $$

    We now define a new function \(\Psi_n (x) \):

    $$ \forall n \in \mathbb{N}, \ \Psi_n (x) = \ \Biggl( \overset{n}{\underset{k=1}{\bigcirc f_k}} \ \Biggr ) (x) $$

    So that:

    $$ \forall n \in \mathbb{N}, \ \forall k \in [\![1, n ]\!], \ \Psi_k = \left \{ \begin{align*} \Psi_1 = f_1 \\ \Psi_2 = (f_1 \circ f_2 ) \\ \Psi_3 = (f_1 \circ f_2 \circ f_3 ) \\ \Psi_4 = (f_1 \circ f_2 \circ f_3 \circ f_4 ) \\ ... \\ \Psi_n = (f_1 \circ f_2 \circ \ ... \ \circ f_{n-1}\circ f_n ) \end{align*} \right \} $$

    Using a chain derivation multiple times, we found out that:

    $$ \forall n \in \mathbb{N}, \ \forall k \in [\![1, n ]\!], \ \bigl(\Psi_k \bigl)' = \left \{ \begin{align*} \Psi_1 ' = f_1 ' \\ \Psi_2 ' = f_2' \times (f_1' \circ f_2 ) \\ \Psi_3 ' = f_3' \times \bigl( f_2' \circ f_3 \bigr) \times \bigl(f_1' \circ f_2 \circ f_3 \bigr) \\ \Psi_4' = f_4' \times \bigl( f_3' \circ f_4 \bigr) \times \bigl(f_2' \circ f_3 \circ f_4 \bigr) \times \bigl(f_1' \circ f_2 \circ f_3 \circ f_4 \bigr) \\ ... \\ \Psi_n' = f_n' \times \bigl( f_{n-1}' \circ f_n \bigr) \times \bigl( f_{n-2}' \circ f_{n-1} \circ f_n \bigr) \times \ ... \ \times \bigl(f_1' \circ f_2 \circ \ ... \ \circ f_{n-1} \circ f_n \bigr) \\ \end{align*} \right \} $$


    Thus we can model it by,

    $$ \forall n \in \mathbb{N}, \ \forall k \in [\![1, n ]\!], \ \forall f_k \in \hspace{0.05em} f^k,$$

    $$ \Psi_n' = f'_n \times \prod_{k=1}^{n-1}\Biggl[ f'_{n-k} \circ \Biggl( \overset{n}{\underset{j= (n - k) + 1}{\bigcirc f_j}} \ \Biggr ) \Biggr] \\ $$

    $$ with \enspace \Psi_n (x) = \Biggl( \overset{n}{\underset{k=1}{\bigcirc f_k}} \ \Biggr ) (x) = \Bigl(f_1 \circ f_2 \circ f_3 \circ \ ... \ \circ f_{n-1} \circ f_{n}\Bigr)(x) $$

    And under a developped form,

    $$ \Psi_n' = \Biggl( \overset{n}{\underset{k=1}{\bigcirc f_k}} \ \Biggr )'= f_n' \times \bigl( f_{n-1}' \circ f_n \bigr) \times \ ... \ \times \bigl(f_1' \circ f_2 \circ \ ... \ \circ f_{n-1} \circ f_n \bigr)$$


  5. Examples


    1. Calculation of \( cos(2x)' \)
    2. To calculate the derivative of \( cos(2x) \), we set down that:

      $$ \Biggl \{ \begin{align*} g(x) = 2x \\ f(x) = cos(x) \end{align*} $$

      Then, we calculate their respective derivative:

      $$ \Biggl \{ \begin{align*} g'(x) = 2 \\ f'(x) = -sin(x) \end{align*} $$

      We now apply the following formula:

      $$ (f \circ g)' = g'(f' \circ g) $$

      And,

      $$ cos(2x)'= -2.sin(2x) $$
    3. Calculation of \( \Bigl( \sqrt{e^{x^2}} \Bigr)' \)
    4. Here, we have to considerate a triple chain derivation:

      $$ \left \{ \begin{align*} h(x) = x^2 \\ g(x) = e^x \\ f(x) = \sqrt{x} \end{align*} \right \} $$

      We calculate their respective derivative:

      $$ \left \{ \begin{align*} h'(x) = 2x\\ g'(x) = e^x \\ f'(x) = \frac{1}{2\sqrt{x}} \end{align*} \right \} $$

      Applying the simple formula twice in a row or the multiple composite functions give the same result:

      $$ (f \circ g \circ h)' = h' (g' \circ h) (f' \circ (g \circ h) ) $$

      So:

      $$ \Bigl( \sqrt{e^{x^2}} \Bigr)' = 2x e^{x^2} \frac{1}{2\sqrt{e^{x^2}}} $$
      $$ \Bigl( \sqrt{e^{x^2}} \Bigr)' = \frac{ x e^{x^2}}{\sqrt{e^{x^2}}} $$
      $$ \Bigl( \sqrt{e^{x^2}} \Bigr)' = x \sqrt{e^{x^2}} $$

Recap table of the derivatives of composite functions

This a recap table of composite function of type \(f(u(x))\).

$$x \longmapsto u(x) \longmapsto f(u(x))$$

In all these different cases, it will be necessary depending on the intermediate function \(u\), to restrict the domain of definition of \(f(u)\) at most that of \(u\).

$$ \underline{condition} $$
$$ \underline{composite function} $$
$$ \underline{condition} $$
$$ \underline{derivative} $$
$$ \forall u \in \mathbb{R} $$
$$ f(u) = u^2 $$
$$ \forall u \in \mathbb{R} $$
$$ f'(u) = u' \times 2u $$
$$ when \ x \ is \ defined $$
$$ f(u) = u^n $$
$$ \forall u \in \hspace{0.03em}\mathcal{D}_{f} $$
$$ f'(u) = u' \times nu^{n-1} $$
$$ \forall u \in \hspace{0.03em}\mathcal{D}_{f} $$
$$ f(u) = n^u $$
$$ \forall u \in \hspace{0.03em}\mathcal{D}_{f} $$
$$ f'(u) = u' \times ln(n)n^u $$
$$ with \hspace{0.4em} \mathcal{D}_{f} \hspace{0.05em} = \hspace{0.05em} \forall u \in \mathbb{R}, \enspace \forall n \in \mathbb{R_+^*} $$
$$ \forall u \in \hspace{0.05em} \mathbb{R^+}$$
$$ f(u) = \sqrt{u} $$
$$ \forall u \in \hspace{0.05em} \mathbb{R^*_+}$$
$$ f'(u) = \frac{u'}{2\sqrt{u}} $$
$$ \forall u \in \hspace{0.05em} \mathbb{R^*}$$
$$ f(u) = \frac{1}{u} $$
$$ \forall u \in \hspace{0.05em} \mathbb{R^*}$$
$$ f'(u) = - \frac{u'}{u^2} $$
$$ \forall u \in \mathbb{R}$$
$$ f(u) = e^u $$
$$ \forall u \in \mathbb{R}$$
$$ f'(u) = u' \times e^u $$
$$ \forall u \in \mathbb{R^*_+}$$
$$ f(u) = ln(u) $$
$$ \forall u \in \mathbb{R^*_+}$$
$$ f'(u) = \frac{u'}{u} $$
$$ \forall u \in \mathbb{R^*}$$
$$ f(u) = ln|u| $$
$$ \forall u \in \mathbb{R^*}$$
$$ f'(u) = \frac{u'}{u} $$
$$ \forall u \in \hspace{0.03em}\mathcal{D}_{f} $$
$$ f(u) = log_n{u} $$
$$ \forall u \in \hspace{0.03em}\mathcal{D}_{f} $$
$$ f'(u) = \frac{u'}{u} \frac{1}{ln(n)} $$
$$ with \hspace{0.4em} \mathcal{D}_{f} \hspace{0.05em} = \hspace{0.05em} \forall u \in \mathbb{R_+^*}, \enspace \forall n \in \mathbb{R^*_+} $$
$$ \forall u \in \mathbb{R}$$
$$ f(u) = sin(u) $$
$$ \forall u \in \mathbb{R}$$
$$ f'(u) = u' \times cos(u) $$
$$ \forall u \in \mathbb{R}$$
$$ f(u) = cos(u) $$
$$ \forall u \in \mathbb{R}$$
$$ f'(u) = -u' \times sin(u) $$
$$ \forall u \in \hspace{0.03em}\mathcal{D}_{f} $$
$$ f(u) = tan(u) $$
$$ \forall u \in \hspace{0.03em}\mathcal{D}_{f} $$
$$ f'(u) = -u' \times (1 + tan^2(u)) $$
$$ with \hspace{0.4em} \mathcal{D}_{f} \hspace{0.05em} = \hspace{0.05em} \forall k \in \mathbb{Z}, \enspace \forall u \in \biggl[ \mathbb{R} \hspace{0.2em} \backslash \Bigl\{ \frac{\pi}{2} + k\pi \Bigr\} \biggr] $$

Reciprocal function\(: (f^{-1} )' \)

Let be \( f \) a function such as:

$$ f : I \longmapsto f(I) = J , \enspace x \longmapsto f(x) $$

We define its reciprocal function by:

$$ f^{-1} : J \longmapsto I , \enspace f(x) \longmapsto x $$

Let us start from the previous result of the derivative of a composite function:

Let us compose \( f \) with its reciprocal \( f^{-1} \):

$$ \bigl(f \circ f^{-1 }\bigr)(x) = (f^{-1})'(x) .(f' \circ f^{-1})(x) \qquad (1) $$

But, we know from the definition of a reciprocal function that:

$$\bigl(f \circ f^{-1 }\bigr)(x) = x$$

So:

$$ \bigl(f \circ f^{-1 }\bigr)'(x) = (x)' $$
$$ \bigl(f \circ f^{-1 }\bigr)'(x) = 1 \qquad (2) $$

Now injecting the right member of \( (1) \) in the left one of \( (2) \), we obtain:

$$ (f^{-1})'(x) .(f' \circ f^{-1})(x) = 1 $$

And finally,

$$ \forall (f,f^{-1}), \enspace (f' \circ f^{-1}) \neq 0, $$

$$ ( f^{-1} )'= \frac{1}{ (f' \circ f^{-1})} $$


Recap table of the derivatives of operations on functions

Return Index
Scroll top Go to the top of the page